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ABSTRACT 
 
 
Skeletons are the most direct way to study long-term trends in longevity, mortality patterns, and 
disease experience for much of human existence. Adequate age estimates can be produced for 
children and young adults, but such estimates for most of adulthood remain elusive. This four-
phase dissertation is a large-scale proof-of-concept that accurate and precise age estimates 
can be produced for all of adulthood without the two most widely used skeletal indicators—the 
pubic symphysis and auricular surface. This work builds on over two decades of research by an 
international research team and an existing age-estimation method called Transition Analysis 
(TA). In Phase 1, more than 200 trait variants were investigated to identify and refine a set of 
age-informative features throughout the skeleton, and primary reference data were collected 
from four collections of modern, known-age North American skeletons (N=1010). In Phase 2, a 
simplified procedure based on existing TA was developed to produce age estimates from Phase 
1 reference data. In Phase 3, standard age-estimation methods and new TA were applied to 
additional known-age samples—one modern and one historical. In both samples, the estimates 
produced by new TA have similar accuracy to traditional methods, but the ranges are, on 
average, half as wide and show essentially no systematic point estimate bias. In Phase 4, 
traditional methods and new TA were applied to two Danish archaeological samples. Comparing 
the Phase 3 and 4 samples reveals that each traditional method produces a characteristic 
pattern of adult mortality that is practically independent of the age distribution of the sample. 
Thus, all mortality profiles generated for past populations using traditional techniques should be 
viewed with critical skepticism. In contrast, new TA produces mortality distributions that more 
closely approximate reality, including details that could not be detected using traditional 
techniques. This dissertation, in conjunction with a larger NIJ-funded research project using the 
same approach for geographically diverse modern populations, provides every indication that 
the new TA procedure may become the new gold standard for adult age estimation. 
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Until easier, yet sophisticated, laboratory methods become 
 available the ageing of skeletal remains will always remain  

a matter of inspired estimation and a little good fortune. 
 Alan A. Watson 1 

 
 
 
 
 
 
 

Now this is not the end. It is not even the beginning of the  
end. But it is, perhaps, the end of the beginning. 

Winston Churchill 2 
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CHAPTER 1: INTRODUCTION 
 
 
Estimating how old an individual was when death occurred is one of the essential steps of most 
skeletal analyses. This is true whether the ultimate goal is to assess a single individual, such as 
an isolated grave or in a forensic case, or a larger skeletal sample, as is needed in 
paleodemography and paleoepidemiology. In forensic contexts, skeletal evidence is often 
critical to investigations of homicides, missing persons, migrant border deaths, and war crimes. 
Archaeologically, skeletal remains are one of the only, and most direct, ways of approaching 
comparative studies of longevity, mortality patterns, social organization, life history courses, 
disease experience, and population growth for most of human existence. Although forensic and 
archaeological investigations differ in scope and potential legal ramifications, both hinge on 
skeletal age-at-death estimates that are sufficiently accurate and precise to allow interpretations 
to be presented with a reasonable and quantifiable degree of confidence. 
 
A century of method development and refinement has resulted in techniques that can produce 
reasonable estimates of age for infants, children, and adolescents (Lewis & Flavel, 2006). 
Unfortunately, age estimation for much of the adult lifespan, particularly for individuals over the 
age of 50, remains problematic (Falys & Lewis, 2011; Milner & Boldsen, 2012b). Over the past 
three decades, the evidence indicating that existing methods are not only inadequate, but likely 
detrimental to many investigations has greatly expanded (Buckberry, 2015). However, age 
estimates are often presented without full disclosure, or sometimes even acknowledgement, of 
their flaws or the limitations of what can actually be said from skeletons. Most critically, existing 
methods consistently produce biased age estimates and little can be said with reasonable 
confidence for individuals in the latter half of the adult lifespan. Typically, methods overestimate 
age for young adults, increasingly underestimate it after around age 40, and lump a large 
fraction of the population into a terminal open-ended category (e.g., 50+). Attempts have been 
made to mitigate the well-documented problems with standard methods by using new ways of 
subdividing skeletal features and more complex statistical procedures (M. F. Anderson, 
Anderson, & Wescott, 2010; Buckberry & Chamberlain, 2002; Buk, Kordik, Bruzek, Schmitt, & 
Snorek, 2012). These applications, however, have only demonstrated that the most commonly 
used skeletal features exhibit insufficient age-related variation after middle age to generate 
improved age estimates (Falys & Lewis, 2011; Milner & Boldsen, 2012c).  
 
In forensic settings, the stakes for obtaining accurate and precise age estimates are high 
because age-estimation error can have serious ramifications for medicolegal investigations. 
Accordingly, existing age-estimation methods have been subject to increased scrutiny, and 
medicolegal standards for method development and evaluation are becoming increasingly 
stringent (Garvin & Passalacqua, 2012; National Research Council, 2009). Although the 
archaeological consequences of age-estimation error may seem less drastic by comparison, a 
debate has simmered for over 30 years regarding the appropriateness of existing methods for 
archaeological samples and the impact of age-estimation error on our interpretations of the past 
(Bocquet-Appel & Masset, 1982, 1985; Buikstra & Konigsberg, 1985; Konigsberg & 
Frankenberg, 1994; Milner & Boldsen, 2012a; Van Gerven & Armelagos, 1983).  
 
One issue highlighted in this debate is whether individuals in prehistory lived beyond 50 years of 
age and, if they did, how many (Chamberlain, 2006). For individuals truly under 50 years of age 
existing methods work reasonably well, at least in comparison to their performance for older 
adults. So, if most or all individuals in a prehistoric population lived to less than age 50, it is 
possible that the data used to generate interpretations of the past are relatively accurate. 
However, if some individuals lived to more advanced ages, they could not be confidently 
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identified using any existing age-estimation technique. Thus, our current understanding of 
changes in age-specific mortality rates, social structure, and work capacity may be seriously 
flawed by age-estimation errors. Regardless of what side of the debate one takes, it is 
impossible to estimate the fraction of the population that lived to over 50 years of age with a 
reasonable degree of confidence from skeletal samples using traditional techniques. This 
dissertation contributes to resolving this long-standing archaeological debate, as well as to all 
endeavors that rely on accurate skeletal data. 
 
Dissertation Overview 
 
I present a new method for adult age estimation based on a previously developed statistical 
framework, a validation study, and the first archaeological application of the new procedure. The 
foundation for this work is almost two decades of ongoing research by an international team 
focused on the complex theoretical, statistical, and methodological components of the adult 
age-estimation problem (Boldsen et al., 2002; Milner and Boldsen, 2012). Beginning in 1996, 
Dr. George Milner and Dr. Jesper Boldsen began collaborative work on the skeletal and 
statistical components of adult age estimation and, in 2002, published a new age-estimation 
method called Transition Analysis (TA), along with collaborators Dr. James Wood and Dr. Lyle 
Konigsberg. Although this method produces significantly improved adult age estimates, the 
performance of the technique is hindered by its reliance on the cranium and pelvic joints 
(Milner & Boldsen, 2012c). These features, which are the basis of many commonly used age-
estimation techniques, experience insufficient change after around age 50 to produce 
adequate age estimates in the latter half of the lifespan. Therefore, for the next decade, an 
informal research team continued work on this project as time and money permitted.  
 
As this work expanded in both scope and complexity, the research team also grew in order to 
tackle the osteological, mathematical, and technological challenges associated with developing, 
testing, and disseminating a new method of adult age estimation. The team currently includes 
individuals from four institutions: The Pennsylvania State University (George R. Milner and Sara 
M. Getz); The University of Southern Denmark (Jesper L. Boldsen, Svenja Weise, and Peter 
Tarp); The Max Planck Institute for Demographic Research—Rostock, Germany (Jutta Gampe); 
and Mercyhurst University (Stephen D. Ousley). Although each researcher specializes on a 
different component of the work—the bones, the math, or the software—the individual and 
collaborative projects, which include this dissertation, each contribute important components to 
the larger research agenda. 
 
In 2014, this dissertation and a more extensive research team project were simultaneously 
funded. These projects are the first full-scale attempts to develop a statistically valid method of 
estimating age with low and known error across the entire adult lifespan using traits from many 
locations throughout the skeleton. Both projects focus on expanding the existing TA framework 
to include features throughout the skeleton that provide information over the entire adult lifespan 
(15–105 years). The research team project, funded by the National Institute of Justice (NIJ) (PI: 
Milner; Co-PIs: Boldsen and Ousley), focuses on the development of a method for forensic 
applications using skeletal samples from modern populations of differing ancestry on four 
continents. This dissertation, funded by a National Science Foundation Dissertation Research 
Improvement Grant (DDRIG #1455810; GR Milner, Advisor), focuses on many of the same 
skeletal traits, using a similar statistical procedure, but investigates the applicability of this age-
estimation approach to a single broadly defined ancestry group over time. If the new TA method 
consistently produces improved adult age estimates for modern individuals from populations 
around the world and for those born over hundreds of years, we will have, for the first time, a 
method that can be confidently applied in both forensic and archaeological settings.  
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This dissertation is divided into four phases: 1) new trait identification and refinement using 
known-age reference collections; 2) collaborative trait refinement, error testing, and method 
development with the research team; 3) validation study, using both modern and historical 
skeletons; and 4) archaeological application. Phases 1, 3, and 4 are the primary components of 
this dissertation and were funded by two Penn State Department of Anthropology Hill Fellowship 
Grants and NSF. Phase 2 contributes substantially to  subsequent phases of the dissertation, 
but is a part of the collaborative NIJ-funded research project. In Phase 1, individuals from four 
collections in North America are used to select features to be incorporated into a revised TA 
procedure. In Phase 2, these features are refined by the research team and combined using a 
simplified version of the existing TA procedure. Variations of this method are then tested on two 
temporally and geographically distinct known-age European skeletal samples in Phase 3, and 
applied to two Danish archaeological samples in Phase 4. The validation study demonstrates 
the accuracy of the new procedure and reveals the likelihood of individuals over 50 being 
detected in archaeological samples, if they indeed existed. The results of these tests and 
applications also indicate the extent to which well-documented errors associated with adult age 
estimation potentially influence our understanding of population dynamics in the past. Even if 
few individuals over 50 are detected in the archaeological samples, improved age estimates will 
allow for more detailed study of key anthropological issues, such as variations in mortality in 
different cultural and environmental settings and the evolutionary relationship between human 
menopause and longevity, by other researchers. 
 
Phase 1: New trait identification and refinement using known-age North American 
reference collections 
 
The approach used to estimate adult age by most standard methods is straightforward. Skeletal 
variation is described for one anatomical area, such as the pubic symphysis or auricular 
surface, using a fixed set of phases that each include features assumed to change together 
throughout life. Each phase is associated with a point estimate and age range calculated 
directly from its distribution in a skeletal reference sample. Unfortunately, while many features 
described in such methods experience age-related changes, at least for parts of the lifespan, 
there is great variation in how they do so relative to other traits within the same individual 
(Algee-Hewitt, Tersigni-Tarrant, & Shirley, 2013; Purves, Woodley, & Hackman, 2011). 
Additionally, the known-age reference collections where these features are documented are 
typically small and, more importantly, biased samples of the living populations that they 
represent (Bocquet-Appel & Masset, 1982; Usher, 2002). As a result, the age distributions of 
traits in skeletal samples do not necessarily reflect the true age distributions of the traits in living 
populations. For these reasons, traditional age-estimation methods have proved to be an 
inadequate way to capture complex biological variation.  
 
Unpublished work by members of the research team has demonstrated that, after training on 
hundreds of known-age skeletons, experienced observers can produce age estimates with 
higher accuracy and finer precision than any existing method (Milner & Boldsen, 2012c). This 
indicates that significantly more age-related variation exists in the skeleton than is captured by 
the relatively few anatomical structures used in standard techniques. The process of 
deconstructing the features used to make experience-based age assessments began in 
conjunction with the development of the TA procedure in the late 1990s (Boldsen, Milner, 
Konigsberg, & Wood, 2002). Almost a decade later, this list was expanded by George Milner 
based on extensive skeletal experience and input from other research team members. 
Preliminary tests were conducted by Milner with several traits at the William M. Bass Collection, 
and by other members of the research team who used these and other traits and looked at 
additional skeletons. Beginning with a list of features from Milner’s initial work, the goal of Phase 
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1 is to identify and define a set of macroscopic features throughout the skeleton that collectively 
provide age information for the entire adult lifespan. Phase 1 is divided into two subphases—1a) 
preliminary trait identification and refinment and 1b) primary trait selection. 
 
In Phase 1a, four rounds of data collection, with samples of 100 to 200 skeletons from the Bass 
Collection in Knoxville, TN, were used in an interative process of trait identification, data 
collection, analysis, and refinement to select traits with promising age-related patterns. Although 
the initial list of features was primarily developed by Milner, additional features were suggested 
by Getz for each round of data collection. The  development and refinement of trait definitions, 
as well as the evalution of each set of preliminary data, were highly collaborative endeavors 
between Milner and Getz. In Phase 1b, 53 traits identified in preliminary tests were investigated 
using 1010 individuals from four skeletal collections in the United States and Canada—the 
Bass, Maxwell Museum Donated, UI-Stanford, and JCB Grant collections. These data were 
used to select traits for further investigation in Phase 2.  
 
Phase 2: Collaborative trait refinement, error testing, and method development 
 
Phase 1 uses extensive work by an informal research team as a starting point to identify and 
refine a suite of new age-informative skeletal features using multiple rounds of preliminary data 
collection and the analysis of a large primary reference data set. However, for these traits to be 
of use to the osteological community, they must be formally incorporated into an easy-to-apply 
age-estimation procedure and disseminated in an accessible format. These needs are 
addressed as core components of the collaborative NIJ-funded research team project. Using 
modern skeletal reference collections from four continents, the goals of the NIJ project are to: 1) 
define new age-informative skeletal features; 2) assess inter- and intra-observer error; 3) 
establish trait age distributions in populations of diverse ancestry; 4) investigate theoretical and 
statistical improvements to the existing TA framework; and 5) develop materials for the 
dissemination of the new method to the osteological community, including an illustrated scoring 
manual and a user-friendly computer program.  
 
Portions of the NIJ project contribute to this dissertaiton as Phase 2. Prior to the start of NIJ-
funded data collection, the traits identified in Phase 1 were combined with additional traits 
suggested by other members of the research team. The features were then assessed in modern  
skeletal samples representing populations from North America, Europe, Africa, and Asia. After 
each round of data collection and analysis, existing trait definitions were refined by experienced 
osteologists, both native and non-native English speakers, with various levels of familiarity with 
the features. Definitions were reformatted, diagrams were added, and trait variants and scoring 
exceptions were extensively documented through photographs to create a scoring system that 
is easy to teach and apply with low error. Features demonstrating consistant age-related 
patterns across populations were selected for use in the new TA method. As a research 
assistant on this project, I worked closely with Milner and Boldsen to plan data collection trips, 
create forms, select samples, collect skeletal data in the field, photographically document 
skeletal traits, enter and analyze data, manage the content of the trait scoring manual, and 
substantively contribute to co-authored posters and presentations.  
 
In this dissertation, a simplied version of the TA statistical framework developed by the research 
team is used to analyze the primarily reference data collected in Phase 1. In Phase 3, variations 
of the new TA procedure are tested using combinations of statistical models, reference 
samples, prediction intervals, and numbers of traits to identify the strengths and weaknesses 
introduced by each approach. The results of the new TA method applied single ancestry group 
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over time provide a foundation for more extensive comparative work by the research team using 
our large data set from modern populations around the world. 
 
At the time of this writing, the NIJ project is entering its third, and final, year. At the completion of 
the project, anticipated for the end of 2017, data collected by the team and a portion of the 
Phase 1 and Phase 3 data from this dissertation will be incorportated into an updated version of 
the TA program (Boldsen et al. 2002). This program will allow age information from a large 
number of selected features to be combined with information about population structure in order 
to produce accurate and precise age estimates for the entirety of adulthood. At this time, all of 
the reference sample data have been collected and analyzed. The team is currently working on 
specific aspects of method development, including approaches for mitigating the effects of trait 
correlations and the use of population prior distributions. The final new TA method is anticipated 
to be released in 2018 as both a stand-alone program, as well as part of the commonly used 
software program, Fordisc (Ousley & Jantz, 2015).  
 
Phase 3: Validation study 
 
In Phase 2, procedures developed by the research team are used to fit variations of several 
statistical models to the primary reference data collected in Phase 1. Using these models, the 
probability of each feature existing over the adult lifespan is estimated for the entire combined 
sample, for males and females separately, and for each of two death cohorts. In Phase 3, these 
data for each trait are used in various combinations to produce age-at-death estimates for two 
temporally and geographically distinct European samples—individuals born in the nineteenth 
and twentieth centuries in Athens, Greece (Athens Collection), and in the seventeeth, 
eighteenth, and nineteenth centuries in London, England (St. Bride’s Crypt). The two test 
samples represent populations spanning more than 300 years that varied significantly in their 
nutrition, disease exposure, and access to medical care, both from each other and from the 
Phase 1 reference collections.  
 
Age estimates produced using variations of the new TA method are compared to estimates 
generated by commonly used age-estimation methods and the original TA program, which uses 
features only from the cranium and pelvis. These estimates are also compared with experience-
based estimates to show the degree to which the new TA method captures the information 
throughout the skeleton used by experienced osteologists in expert age assessments. The 
performance of the method on the Athens skeletons demonstrates the method’s applicability in 
modern, forensic contexts, while those from St. Bride’s crypt are an appropriate comparative 
sample for the Danish archaeological skeletons evaluated in Phase 4.  
 
Phase 4: Archaeological application 
 
In Phase 4, the newly validated TA procedure is applied to two contextually well-documented 
samples from the Danish city of Horsens—Ole Worms Gade (ca. 1100–1500 CE) and 
Klosterkirke (ca. 1500–1800 CE). These samples represent populations from the Middle Ages 
and Early Modern period, in which, based on trends seen in historical documentation, we would 
expect to see differences in mortality profiles. These samples are evaluated using several 
standard age-estimation methods, the original TA method, and the new TA procedure. Mortality 
profiles are derived for each of the samples using the data from each method. These age-at-
death distributions are compared with one another and to those produced for the known-age 
skeletal samples evaluated in Phase 3 to assess the potential biases introduced into 
paleodemographic analyses by each method.  
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Traditional procedures produce age-at-death distributions with method-specific charateristics 
that do not resemble one another or, based on the Phase 3 tests with known-age samples, 
reality. Age distributions produced using data from the new TA method reveal subtleties in 
population age structure, including increased numbers of individuals in older age categories, 
which are not apparent using data from traditional methods.  
 
Issues of sample formation, age estimation error, and population structure are considered in the 
discussion of how well the improved age estimates bridge the gap between archaeological data 
and historical sources. This application demonstrates the high degree to which the use of 
different age-estimation techniques likely impacts the conclusions drawn from archaeological 
data and supports the necessity of re-evaluating previously investigated samples. 
 
Dissertation Structure 
 
Chapter 2 briefly introduces fundamental concepts related to human senescence, skeletal 
aging, and the use of skeletal data in archaeological and paleodemographic contexts. This 
chapter discusses theoretical and practical issues surrounding the process of human aging and 
provides an overview of adult skeletal age estimation. It includes a brief history of the field, 
discussion of what has been learned from nearly a century of investigation with skeletal 
collections around the world, and an overview of key issues in the use of skeletal age estimates 
in paleodemographic studies. Chapter 3 describes Phase 1—the process of age-informative 
trait identification, refinement, and selection from a large reference sample of known-age North 
American skeletons. Chapter 4 summarizes key components of the NIJ-funded research project 
currently underway by an international team as they apply to this dissertation. Chapter 5 
presents the results of the validation study with modern individuals from Athens, Greece, and 
historical individuals from St. Bride’s crypt in London, Engand. The performance of the new 
skeletal features is compared with experience-based age estimates, original TA using the 
cranium and pelvis, and other traditional age-estimation methods. The implications of 
differences among these methods for archaeological applications and the potential for future 
improvements in adult age estimation are discussed. Chapter 6 presents the results of various 
age-estimation methods applied to two Danish archaeological samples and discusses the 
implications of these results for other archaeological investigations. Chapter 7 summarizes the 
lessons learned during the investigation of traits, results from the known-age tests and 
archaeological application of the new procedure, and limitations of this work. The implications of 
these results for forensic and archaeological applications and avenues of future research are 
also discussed. 
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CHAPTER 2: AGING OF THE ADULT SKELETON—THEORY & PRACTICE 
 
 
For well over 100 years, anatomists and physical anthropologists have been interested in age-
related variation in the human skeleton (e.g., Davies, 1913; Dwight, 1890a, 1890b; Parsons & 
Box, 1905). Fundamental to these investigations is that bone is a living, dynamic tissue 
capable of adapting and repairing itself in response to activity, disease, and the demands of life 
(M. Cox, 2000; Seeman, 2008). From the beginning of skeletal formation in utero until well into 
the third decade of life, the growth and development of bones and teeth can be used to 
estimate age. These estimates are inherently more precise than those based on “degenerative” 
changes in the adult skeleton, which begin almost as soon as skeletal development is 
complete and are influenced by a multitude of poorly understood factors (M. Cox, 2000; 
Franklin, 2010; İşcan & Loth, 1989; Mays, 2015). Although methods exist to adequately 
estimate age-at-death from the skeletal remains of infants, children, and adolescents, methods 
for estimating age throughout adulthood with a useful degree of precision remain elusive. 
Estimating age for individuals over the age of 50 years is particularly problematic (Falys & 
Lewis, 2011; Milner & Boldsen, 2012b).  
 
Although it is ultimately chronological age—the amount of time that has passed since birth—
that is most important in forensic, archaeological, and paleodemographic investigations, this 
information must be estimated from features of the skeleton (Milner & Boldsen, 2012b). The 
development and application of skeletal age-estimation methods relies on several critical 
assumptions: first, that skeletal variation in the adult skeleton can be identified and classified in 
ways that can be accurately and reliably applied by others (Milner & Boldsen, 2012b); second, 
that the traits, and the scoring schemes developed for them, correlate with the passing of time 
in a predictable and meaningful way (M. Cox, 2000); finally, that the features change in the 
same way and at the same rate in all populations, or at least readily identifiable groups of 
them, such as males and females (Milner & Boldsen, 2012b).  
 
It is a commonly believed among both forensic anthropologists and archaeologists that age-
related skeletal changes occur at different rates both within and between the sexes and among 
populations; therefore, population and sex-specific standards will provide better age estimates 
for adults (M. Cox, 2000; Eliopoulos, Lagia, & Manolis, 2007; İşcan & Loth, 1989; A. Schmitt, 
Murail, Cunha, & Rougé, 2002). Although females are typically less well represented than 
males in skeletal reference collections, obtaining reasonable numbers of males and females is 
still possible by using multiple samples. Unfortunately, the number of well-documented skeletal 
reference collections in the world is far fewer than the number of populations that forensic 
anthropologists are interested in. The reference collections that do exist are typically relatively 
small, and inherently biased, samples of the populations they supposedly represent (Hunt & 
Albanese, 2005; Komar & Grivas, 2008; Usher, 2002). Therefore, population-specific standards 
are based on relatively small numbers of individuals who may or may not be a good match to 
the population or the individual being analyzed (Milner & Boldsen, 2012b). One approach to this 
problem is to use a large and diverse reference sample that is likely to capture the range of 
morphological variation that could conceivably be expected in all human populations. Although 
merging data from different groups is likely to decrease the precision of age estimates (i.e., 
broaden them), this conservative approach is ideal for many forensic and archaeological 
situations where the factors affecting skeletal variation are largely unknown and a close match 
to a reference sample is not possible (Milner & Boldsen, 2012b; A. Schmitt et al., 2002; 
Townsend & Hammel, 1990). 
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Aging and the Adult Skeleton 
 
Our ancestors have likely been aware of the concept of aging—the predictable degeneration of 
the body with time, eventually ending in death—for at least the last 50,000 years (Arking, 
2006b). However, it was not until the late nineteenth century when the first modern scientific 
inquiries related to the human lifespan and its relationship to social and environmental variation 
began to take shape (Arking, 2006b; Weismann, 1891). In the century that followed, continuing 
until today, investigations into the biology of aging became fundamental to the study of being 
human (Arking, 2006b).  
 
As the study of human aging has expanded in both depth and breadth, the concept has been 
variably defined for use in a multitude of contexts (Arking, 2006b). In this dissertation, the most 
useful definition of aging makes a broad distinction between development and essentially 
everything else. Development consists of early processes that enhance functional capabilities, 
whereas aging consists of all subsequent changes that either diminish or have no effects on the 
ability to function (Kohn, 1978). Importantly, aging increases the probability that an individual will 
die over time and decreases their ability to withstand extrinsic stresses (Arking, 2006b). It is this 
relationship between the effects of aging and factors such as climate, food availability, diet, and 
disease exposure that fundamentally determines much of the demographic structure of a 
population (Weiss, 1981).  
 
Chronological versus biological age 
 
Physiological aging, including changes in the skeleton, is not a simple process that perfectly 
correlates with the passage of time (Arking, 2006b). In most of the modern world, it is common 
for an individual’s chronological age to be precisely documented. Chronological age is linear 
and occurs at the same rate in all individuals and populations where time is measured in 
conventional units, and it is this metric that is of most value to forensic anthropologists and 
archaeologists. For example, chronological age is key to identifying individuals in forensic 
settings, estimating the age structure of populations in paleodemography, and calculating the 
number of person-years of risk in paleoepidemiology. Unfortunately, the link between 
observable biological changes in the adult skeleton and chronological age is poorly understood 
and influenced by a number of complex interrelated factors (M. Cox, 2000; Mays, 2015).  
 
An array of possibilities, including genetics, endocrine function, disease, joint biomechanics, 
diet, body size, body composition, activity level, and even climate, among others, have been 
invoked to explain perceived differences in the timing and appearance of age-related features 
among individuals and samples (Belkin, Livshits, Otremski, & Kobyliansky, 1998; İşcan & Loth, 
1989; Mays, 2015; Merritt, 2015; Wescott & Drew, 2015). Disappointingly, in the best-case 
scenario, investigations of skeletons can provide only very general statements about the 
correlation of features with age based on small and often biased samples of living populations. 
While these investigations provide critical starting points for future investigations of factors 
influencing the aging process, they cannot offer convincing evidence for causal relationships 
between skeletal traits and social conditions, biology, or the environment (Arking, 2006b). 
Although much of the variation among individuals may have a biological explanation, many of 
the changes within each individual may simply be the result of random factors (Weiss, 1981). 
Large samples, analyzed with appropriate statistic models, are necessary to identify patterns in 
the aging process and to understand the relationship between variation in aging and the factors 
that influence it (M. Cox, 2000; Weiss, 1981). 
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Activity, aging, and disease  
 
In his first paper discussing age-related changes in the pubic symphysis, Todd (1920, p.287) 
writes that “many of these modifications which appear successively during adult age are on the 
border-line between the anatomical and the pathological.” For the features throughout the 
skeleton used in this dissertation, the distinction between aging and disease is an important 
terminological issue. Anthropologists have historically made hazy, and sometimes arbitrary, 
distinctions between skeletal features related to “normal” aging, disease and activity depending 
on their educational background, experience, and research objectives. Although some early 
work recognized the complex interplay between disease processes and age (Sashin, 1930; T. 
D. Stewart, 1958), the majority of studies investigating musculoskeletal stress markers and 
degenerative joint disease have primarily focused on the relationship with habitual activity 
patterns (Larsen, 1997; Milella, Belcastro, Zollikofer, & Mariotti, 2012; Pearson & Buikstra, 
2006). Recently, several studies of features traditionally believed to be primarily related to 
repetitive activity and disease, including osteoarthritis and ossification at fibrous and 
fibrocartilaginous attachment sites, found these features to be more highly correlated with age 
than other factors (A. F. Cardoso & Henderson, 2010; Milella et al., 2012). It is also often 
impossible, and perhaps even detrimental, to make a distinction between “disease” and “aging” 
because of the increased likelihood of one with the other. For example, although younger 
individuals may develop osteoarthritic changes in particular joints because of trauma, obesity, 
or extreme physical activity, the probability of this occurring in multiple areas of the skeleton 
increases with age, as do other risk factors including muscle weakness, obesity, and hormonal 
dysregulation (Felson et al., 2000).  
 
Here Kohn (1978) offers another broadly useful definition: aging is considered a progressive 
and irreversible process that occurs in all members of a population and accelerates at maturity, 
whereas disease occurs in only a fraction of all individuals. With the exception of several 
developmental features, such as epiphyseal union of the clavicle, the features investigated in 
this dissertation begin to appear once the skeleton is fully formed and probabilistically increase 
in frequency with advancing chronological age. Although many of these features may have, at 
one time or another, been dismissed as markers of activity or disease by other researchers, no 
a priori assumptions were made in the initial selection of features for investigation.  
 
Features were initially selected for investigation based on a subjective judgment of their age-
informative potential and were ultimately selected for inclusion in the new TA procedure based 
on the appearance of consistent age-related patterns in multiple samples. In each individual 
skeleton, features were excluded only if they were clearly affected by trauma or a disease 
process, or were part of a skeletal abnormality. For example, in an individual affected by 
cancer, features in direct contact with an abnormal growth or a resorptive area were not 
scored. Features elsewhere in the skeleton, however, were included despite the possible 
systemic effects of the disease. This decision is consistent with the goal of creating a broadly 
applicable reference sample that captures as much of the morphological variation within a 
population as possible.3 
 
 
 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 This scoring procedure also makes sense for archaeological or forensic applications where often only a portion of 
the skeleton is present. For example, if only the thorax and upper limb of an individual are recovered, cancer that was 
active only in the pelvis could not be detected and the features in the available elements would be used to estimate 
age. The reference samples used in this dissertation and the NIJ-funded project (described in Chapters 3 and 4) 
capture the variation potentially introduced by disease processes.  
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Decline in the rate of increase of age-specific mortality rates 
 
Several modern demographic studies have provided evidence for a decline in the rate of 
increase in age-specific death rates after the age of 80, particularly in females (Arking, 2006a; 
Horiuchi & Wilmoth, 1998). Two primary hypotheses have been proposed to explain this 
slowing in late-life age-specific morality—the heterogeneity and the individual-risk hypotheses 
(Horiuchi & Wilmoth, 1998; Khazaeli, Xiu, & Curtsinger, 1995; Vaupel, Manton, & Stallard, 
1979). The heterogeneity hypothesis speculates that the deceleration is the result of frailer 
individuals dying at younger ages, so that by the older ages, the survivors tend to be healthier 
and age more slowly (Horiuchi & Wilmoth, 1998). The alternative—the individual-risk 
hypothesis—has several variations that focus on possible causes of slowing mortality at older 
ages at the individual, rather than the population, level (Horiuchi & Wilmoth, 1998).  
 
Most osteologists assume that individual variation in the skeleton accumulates with time so that 
by around 50 or 60 years of age it becomes so great that nothing meaningful can be said about 
age (Milner & Boldsen, 2012a). This view has led to the acceptance of methods of adult age-
estimation that use extremely wide age ranges or terminal open-ended intervals (e.g., 50+ 
years) for the latter half of the lifespan (Milner & Boldsen, 2012a). Encouragingly, however, 
recently published work using existing Transition Analysis (TA), shows that this commonly held 
assumption might be unjustified (Milner & Boldsen, 2012c). Although skeletal variation 
increases between 45 and 75 years of age, it appears to decrease after this time, as reflected 
in a narrowing of predicted age intervals (Milner & Boldsen, 2012c). Furthermore, the same 
study and research conducted as part of this dissertation demonstrates that experienced 
observers can accurately predict age to the maximum extremes of the adult lifespan (Milner & 
Boldsen, 2012c). Selective mortality—the tendency for the frailest individuals at each age to be 
pulled out of the population—may be responsible for this effect (Milner & Boldsen, 2012c). In 
essence, selective mortality tends to reduce the amount of variation present at each age, so 
individuals who make it to the oldest ages, no matter how decrepit their skeletons may appear, 
tend to appear more similar than would any two individuals in middle age.  
 
Traditional Approaches to Adult Skeletal Age-Estimation  
 
The most common approach for creating an adult skeletal age-estimation method is relatively 
straightforward and has remained largely unchanged since its beginnings almost a century 
ago. First, an area of the skeletal is chosen and age-related trait variants are identified. The 
variants are either scored individually or grouped into collections of features, usually called 
phases or stages. A collection of documented skeletons of known age, sex, and ancestry (i.e., 
a reference sample) is then selected. Each individual is evaluated and classified as one of the 
variants or stages. A point age and range are calculated for each variant based on all 
individuals who were given each score, usually with the assumption that the ages of the 
individuals assigned to each variant have a normal distribution. Most commonly, the point age 
for each category is the mean age of all individuals assigned that score, while the range is plus 
and minus two standard deviations (i.e., an approximate 95% confidence interval). The feature 
variants are documented through written descriptions, photographs, diagrams, and, 
sometimes, casts of exemplars. 
 
One of the most commonly used methods is the six-phase Brooks and Suchey (1990) pubic 
symphysis technique. Each phase is described as having a unique combination of features 
associated with a mean and range (Figure 2.0). The method was published with photographs 
and descriptions, and casts of exemplars for teaching and reference can be purchased. While 
these materials are extremely helpful, the examples were selected to represent ideal cases 
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where all features described for a phase are present and relatively easy to detect. Although 
groups of features are presented as moving together in lock step throughout life, in reality 
variation from the classic example is the norm, not the exception (Algee-Hewitt et al., 2013; 
Boldsen et al., 2002; İşcan & Loth, 1989; Purves et al., 2011).  
 
 

 
 
Figure 2.0. Location of the pubic symphysis and phases of the Suchey-Brooks adult age-estimation method (Brooks 
& Suchey, 1990). Early and late examples of each phase are shown, along with the associated mean (gray) and 
range (range) for each. Example figures drawn by George Milner from Tocheri et al. (n.d.) and Diane France casts. 
 
 
This is particularly problematic because all individuals in each phase are assigned the same 
point age and range, regardless of how well the morphology is actually captured by the phase 
description.	
  An implicit assumption of this approach is that all individuals assigned the same 
score are equally likely to have a chronological age that falls into the associated age interval. 
Thus, there is no way to express uncertainty in an age estimate other than selecting more than 
one category, which only further widens already impractical ranges.  
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Aggregating traits into multidimensional phases results in methods that fail to capture much of 
the age-related variation in complex anatomical units in a biologically meaningful way, increase 
error between observers, and ignore significant information about inter- and intra-individual 
skeletal variation (Algee-Hewitt et al., 2013). An alternative way to describe anatomic variation 
is the component approach, where individual features or areas of a bone are described using 
sequences of ordinal variants. The classic example of a component-based method is McKern 
and Stewart’s (1957) work with the pubic symphysis, where five developmental stages for each 
of three components were defined. Unlike phases where features are assumed to occur 
together, each component is scored independently without considering other features. Some 
feature combinations were not observed in the original sample and were thought to be unlikely 
to occur, but point estimates and ranges for all possible sets of summed scores are provided. 
The component approach allows for a finer categorization of the age-related changes within a 
complex anatomical feature. However, the use of simplistic summary statistics, such as means 
and standard deviations, to produce fixed sets of possible age estimates for the summed 
component scores remains problematic.  
	
  
To address this issue, TA was developed to take the component approach a step further. In 
this method, features of the cranial sutures, pubic symphyses, and iliac auricular surfaces are 
separated into independently scored components, each with a unidirectional series of variants. 
A form of logistic regression known as the cumulative logit is used to model the transition 
between ordinal feature stages in large samples of skeletons (Boldsen et al., 2002). The 
probabilistic age information for the traits and their character states in each skeleton is 
combined to produce a maximum likelihood estimate of age, which is then adjusted based on 
prior information about the age structure of the population the individual likely came from. This 
approach allows the age-related variation present in each feature to be combined in a 
statistically valid way. The result is a probabilistically tailored maximum likelihood point 
estimate of age with a confidence interval for each individual based on the skeletal features 
present and the consistency of the age information provided by each trait. 
 
Although TA is a statistical step forward, the estimates produced still fall short of what is 
needed for forensic and archaeological applications, particularly for individuals between 45 and 
75 years of age (Milner & Boldsen, 2012c). Two relatively recent paleodemographic 
applications of the method to archaeological samples from Postclassic Cholula and Contact-
Period Xochimilco Mexico (Bullock, Márquez, Hernández, & Ruíz, 2013) and Late Classic 
Copan in Honduras (Storey, 2007) came to similar conclusions. Mortality profiles produced 
using TA estimates are more similar to what would be expected for ancient populations based 
on existing historical and ethnographic data than those produced using traditional techniques; 
however, greater precision for individuals over 50 is necessary for more detailed analyses. 
 
Other researchers have also recently demonstrated that the application of new scoring 
systems or more advanced statistical techniques to features of the pubic symphysis and 
sacroiliac joint fail to greatly improve their ability to predict age (M. F. Anderson et al., 2010; 
Buk et al., 2012; Hens & Godde, 2016; Martins, Oliveira, & Schmitt, 2012). Using only these 
parts of the skeleton in any analytic approach seems to result in wide intervals and biased 
estimates of age for at least some portions of the adult lifespan. Combining information from 
more than one part of the skeleton is a commonly advocated approach for resolving these 
issues (Angel, Suchey, Iscan, & Zimmerman, 1986; Brooks & Suchey, 1990; DiGangi, Bethard, 
Kimmerle, & Konigsberg, 2009; İşcan & Loth, 1989; Lovejoy, Meindl, Mensforth, & Barton, 
1985; McKern & Stewart, 1957; Meindl & Lovejoy, 1985; Saunders, Fitzgerald, Rogers, Dudar, 
& McKillop, 1992; Todd, 1920). Unfortunately, age estimates from standard methods 
(e.g.,Brooks & Suchey, 1990; Lovejoy, Meindl, Pryzbeck, & Mensforth, 1985; Meindl & Lovejoy, 
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1985) are difficult to combine in a statistically meaningful way (Buckberry, 2015). Tests of 
methods that combine multiple features, such as the Complex and Multifactorial methods, 
indicate that while they produce some improvement relative to methods using only one part of 
the skeleton, they do not solve the issue of age-estimation bias in the latter half of the adult 
lifespan (Baccino, Ubelaker, Hayek, & Zerilli, 1999; Bedford et al., 1993; Lovejoy, Meindl, 
Mensforth, et al., 1985; Milner, Wood, & Boldsen, 2008; Saunders et al., 1992).  
 
In sum, the systematic age-estimation bias resulting from the failure of standard features to 
keep pace with chronological age from middle age onward cannot, in isolation, be overcome by 
any statistical technique (Boldsen et al., 2002; Milner & Boldsen, 2012c). Furthermore, the 
problems associated with all existing adult age-estimation methods cannot be solved simply by 
combining features or methods that individually suffer from the same sort of issues (Milner & 
Boldsen, 2012a). To move towards more accurate and precise adult age estimates, statistical 
improvements must be paired with a broader array of age-informative traits.  
 
Although every bone has the potential to show visible signs of aging (İşcan & Loth, 1989) only 
a limited fraction of the adult skeleton has been extensively investigated for age-related 
variation. By far, the most commonly used features to estimate age are from joints where there 
is no or limited movement, including the cranial sutures, sacroiliac joints, pubic symphyses, 
and sternal rib ends (M. Cox, 2000). These joints show many changes that can be categorized 
in various ways, but why these changes appear and the factors that influence them are not 
well-understood (M. Cox, 2000). It is also not uncommon to observe different levels of age-
related change among various parts of the same individual (M. Cox, 2000; Ubelaker, 2000). 
Weiss (1981) cautions that while the systematic and predictable deterioration of the body is an 
immutable feature of our species, the specific pattern found in each individual can only be 
predicted in terms of vague probabilities. This sentiment has been echoed by physical 
anthropologists, who have noted that the overall pattern of skeletal aging can be highly variable 
from one individual to the next (Işcan, 1989). 
 
Some additional features, such as vertebral osteophytes and changes in multiple portions of 
the scapula, have been investigated; however, they are typically viewed as containing 
insufficient information to adequately predict age (Graves, 1922; T. D. Stewart, 1958) because 
they provide only very general signals of “young” or “old” and are individually of little value 
(Milner & Boldsen, 2012c). With the continued publication of validation studies confirming the 
issues with commonly used features, a number of researchers have investigated new skeletal 
characteristics and revisited some that were previously dismissed (e.g.,DiGangi et al., 2009; 
Falys & Prangle, 2015; Listi, 2016; Listi & Manhein, 2012; Rissech, Estabrook, Cunha, & 
Malgosa, 2006). Disappointingly, the consensus remains that even using new scoring 
techniques and statistical approaches, these features individually contain insufficient age-
related variation to produce practically useful estimates.  
 
Adult Age Estimates in Paleodemography  
	
  
Paleodemographic analyses have three broad analytical steps that require assumptions to be 
made about the sample, the data, and the methods of analysis. First, skeletal data are 
collected using standard techniques, including those for estimating age. Second, these data 
are typically summarized in tables or charts or incorporated into more sophisticated procedures 
to produce quantitative descriptions for a group or population. Lastly, these results are 
interpreted to generate hypotheses or support conclusions about the relationship between 
population structure and changes in factors such as social conditions, biology, or environment.  
To use skeletal age-estimation methods to investigate past populations requires the 
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assumption of uniformitarianism (Howell, 1976). This concept, originally borrowed from 
geology, states that the forces acting the human species, and our biological responses to 
them, are the same now as they were in the past (Howell, 1976; Simpson, 1949). For adult age 
estimation, this assumption operates at both the level of the traits being assessed for each 
skeleton and the population-level patterns that collectively emerge from combining all of the 
individual estimates. An assumption must be made that aging occurred in the same way in the 
population used to develop the age-estimation method as it did in the population being 
investigated (Howell, 1976). In other words, the relationship between observable skeletal traits 
and chronological age must be assumed to the same in the more modern reference samples 
as it was in the past. Additionally, critical features that shape demographic patterns, such as 
greater susceptibility of infants and children to disease, maximum fertility levels, and maximum 
human lifespan, must be assumed to have not changed greatly over time (Howell, 1976; Milner 
et al., 2008). This is not to say that the number of children produced or the average lifespan 
does not vary over time or across populations, only that the maximum limits on these features 
are biologically determined and do not fluctuate significantly (Howell, 1976).  
 
If the data obtained from an age-estimation method is vastly different than what was expected 
based on uniformitarian assumptions, there are two possibilities (Howell, 1982). The first is that 
the population under investigation is different from other similar groups for genetic, biological, 
or social reasons. This result is only possible if the sample adequately reflects the structure of 
the original population and the method being used produces accurate and unbiased estimates 
of age. The second is that the differences are merely the result of biases introduced by the 
sample analyzed or the particular age-estimation method used (Howell, 1982).   
 
Skeletal samples 
 
Archaeological skeletal assemblages are not representative samples of once-living 
populations. This is because at every step in their formation—death, deposition, preservation, 
recovery, and analysis—there are multiple factors that systematically bias which individuals are 
ultimately included in the final sample.  
 
Archaeologists must first make the assumption that the individuals contributing to the mortality 
sample came from a single population that maintained a similar culture over time and had a 
constant level of fertility and mortality4 (Milner et al., 2008). However, the possibility exists that 
the living “population” contributing to the mortality sample was also changing, either through 
fluctuations in fertility, mortality, and migration, or potentially from a new group or series of 
groups moving into or through the area. The size and the demographic composition of the 
population can change over time, together or independently, and both affect the number of 
individuals entering the death sample during any period (Chamberlain, 2006). Careful 
excavation and analysis of the context of the remains is necessary to determine whether the 
mortality sample likely represents a meaningful unit of some population (Milner et al., 2008). 
 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4  A population can be defined in biological or sociocultural terms. Elsewhere in this dissertation, the term “population” 
is used to broadly to refer to a group of individuals who had similar ancestry and lived in the same geographic area or 
time period. For example, males and females of European ancestry that lived the majority of their lives in post-WWII 
America are considered a population that is represented by the Bass Collection. Similarly, the individuals from the 
two archaeological sites in the Danish city of Horsens could be considered two separate populations because they 
are separated by several hundred years, or a single pre-industrial population from the same city, depending on the 
research question.   
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For the individuals in the mortality sample, in the words of the well-known article The 
Osteological Paradox, “There is one, and perhaps only one, irrefutable fact about the cases 
making up a skeletal series: they are dead. We never have a sample of all of the individuals 
who were at risk of disease or death at a given age, but only of those who did in fact die at that 
age” (J. W. Wood et al., 1992, p. 344). In any population at a specific time, the likelihood of 
death for individuals of different ages across the adult lifespan, or even among individuals of 
the same age, is not uniform. Heterogeneity in frailty—the tendency for some individuals at 
each age to be more susceptible to death and disease—is acted on by the external factors to 
produce selective mortality (J. W. Wood et al., 1992). So even individuals of exactly the same 
chronological age differ in their risk of death because of differences in sex, occupation, health 
and other factors. Even if, by chance, the individuals who happened to die are numerically 
representative of the age and sex composition of the population, those individuals would not 
have all of the same characteristics of the still-living individuals because they are the ones who 
did, in fact, die (J. W. Wood et al., 1992).  
 
Although an entire cemetery may contain representatives of all segments of a population, 
additional bias is introduced when only a portion of the area is excavated. Practical 
considerations, including time, money, personnel, and equipment, are often the primary 
constraints influencing the extent of an excavation (D. H. Ubelaker, 1995). Within the area that 
is excavated, cultural and taphonomic factors can further influence how much of the population 
can potentially be represented and which of these individuals have critical skeletal elements 
suitably preserved for analysis (Konigsberg & Frankenberg, 1994; Nawrocki, 1995; D. H. 
Ubelaker, 1995). The presence of clothing or a shroud, depth of burial, and use of a burial 
container and its type, such as a wooden or lead coffin, influence the probability of the skeletal 
elements remaining in close proximity to one other and their potential for preservation 
(Nawrocki, 1995). Other taphonomic factors, such as animal scavenging, human disturbance, 
soil type and pH, vegetation, groundwater, and drainage, also influence the preservation of the 
remains (D. H. Ubelaker, 1995). These factors can vary greatly within relatively small areas 
and differ among individuals because of variations in age, sex, body size, and disease status 
(Nawrocki, 1995).  
 
Figure 2.1 summarizes these issues. A living population that is changing in composition over 
time contributes members non-uniformly to a death sample. These individuals are potentially 
interred in different ways (i.e., with or without clothes or coffins, in individuals graves or in 
groups, at different depths) and in different areas of the cemetery, perhaps separated by age, 
sex, or social status (Konigsberg & Frankenberg, 1994). Of the entire potential death sample, 
often only a fraction is excavated and, of this portion, only some of the individuals will have the 
necessary skeletal elements present or preserved for analysis. In archaeological settings, some 
or all of these factors will shape the sample that is ultimately analyzed (Milner et al., 2008).  
 
From the above discussion, it should be clear why the structure of the mortality sample is not 
the same as that of the living population that it represents (Chamberlain, 2006). This means 
that whether the data adequately represent the sample is a fundamentally different problem 
than if the sample can be used to investigate the population. Although both issues are critical 
for producing accurate interpretations of the past, different sets of assumptions and statistical 
tools are needed to address each problem. Ultimately, if the input data are a biased and 
inadequate representation of the sample, the application of any statistical analysis or modeling 
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technique to generate information about the population will produce meaningless results.5 
 
 

 
 
Figure 2.1. A schematic overview of the factors in archaeological investigations that may influence the skeletal 
sample that is ultimately available for analysis.  
 
 
Applying age-estimation methods to skeletal samples 
 
While the development of population-specific methods has become increasingly common in the 
past decade, these techniques are rarely used in most forensic and archaeological settings 
(Falys & Lewis, 2011; Garvin & Passalacqua, 2012). This is, in part, because interpreting the 
results of these methods is more complex when all other information available for a region or 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 There will always be some unknown, and unknowable, level of error in archaeological samples that can be mitigated 
through the use of various statistical and modeling procedures (Milner et al., 2008). It is the systematic and 
identifiable errors in existing procedures that should not be accepted without question.  
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population is based on the results of standard techniques (Falys & Lewis, 2011). Although the 
differences found between populations may be real, it is also possible that they are simply the 
result of errors introduced by the methods used, the structure of the test sample, or random 
variations in the particular individuals analyzed (Wärmländer & Sholts, 2011).  
 
Paleodemographic results typically show that few individuals survived past 50 years of age, and 
large numbers died between their 20s and 40s. This pattern does not conform to model life 
tables based on plausible age-specific fertility and mortality values for modern and historical 
populations, including those documented ethnographically, such as the Aché, Gainj, !Kung, and 
Yąnomamö (Coale & Demeny, 1983; Hawkes & Blurton Jones, 2005; Hill & Hurtado, 1996; 
Howell, 1979, 1982; Neel & Weiss, 1975; J. W. Wood & Smouse, 1982).  
 
Although the source of these discrepancies is unclear, this pattern is found in essentially all 
archaeological populations, despite large cultural, temporal, and geographic differences among 
them (Chamberlain, 2006; M. Cox, 2000; Milner & Boldsen, 2012b). Furthermore, research on 
known-age skeletal collections from around the world demonstrates that methods consistently 
underestimate age for middle and old-age adults (e.g.,Gocha, Ingvoldstad, Kolatorowicz, 
Cosgriff-Hernandez, & Sciulli, 2015; Murray & Murray, 1991; Rissech, Wilson, Winburn, Turbón, 
& Steadman, 2012; Sakaue, 2006; A. Schmitt, 2004). Together, these data call into question 
whether published mortality profiles are an accurate representation of the prehistoric past, or if 
they are the product of age-estimation error—a debate with a 40-year history (Bocquet-Appel & 
Masset, 1982; Howell, 1982; Konigsberg & Frankenberg, 1994; Lovejoy et al., 1977). 
 
Significance of accurate and precise age estimates 
 
If appreciable numbers of individuals lived beyond 50 years of age in the past, the use of 
standard age-estimation methods results in a substantial loss of information for 
paleodemographic analyses. Because traditional methods often group all individuals in the 
latter half of the adult lifespan into an extremely wide or open-ended age category (e.g., 50+), 
they prohibit the examination of interesting questions related to variations in mortality in 
different cultural and environmental settings. Even if few individuals in the past lived beyond 
middle age, the known errors associated with adult age-estimation have potentially serious 
implications for our understanding of changes in age-specific mortality rates, social structure, 
and the capacity to mobilize labor for essential household and community tasks. 
 
Additionally, although not addressed in this dissertation, there is considerable potential for 
improved age estimates to aid investigations of the timing and relationship between the 
evolution of human menopause and longevity (Gavrilova & Gavrilov, 2005; Lahdenperä, 
Lummaa, Helle, Tremblay, & Russell, 2004; Lahdenperä, Russell, & Lummaa, 2007; 
Lahdenperä, Russell, Tremblay, & Lummaa, 2011; Leonetti, Nath, Heman, & Neill, 2005; 
Peccei, 1995, 2005; Shanley & Kirkwood, 2001; Shanley, Sear, Mace, & Kirkwood, 2007). 
Adaptive hypotheses, including the mother (Peccei, 2001b; Williams, 1957), grandmother 
(Hawkes, O’Connell, Jones, Alvarez, & Charnov, 1998), and reproductive conflict hypotheses 
(Cant & Johnstone, 2008; Cant, Johnstone, & Russel, 2009), involve the fitness benefit 
resulting from the early cessation of personal reproduction and the redirection of energy into 
existing children or grandchildren. Non-adaptive hypotheses, such as the “new” grandmother 
(Peccei, 2001a) and male longevity hypotheses (Kaplan, Hill, Lancaster, & Hurtado, 2000; 
Marlowe, 2000; Tuljapurkar, Puleston, & Gurven, 2007), view menopause as a degenerative 
part of the human life course that we only now reach because of recent dramatic increases in 
longevity (Austad, 1994; Holman, O'Connor, & Wood, 2006). These hypotheses have been 
examined using historical data and modern hunter-gatherer and subsistence agricultural 
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groups (Beise, 2005; Hawkes, O'Connell, & Blurton Jones, 1997; Hill & Hurtado, 1996; 
Lahdenperä et al., 2007; Leonetti et al., 2005; Shanley & Kirkwood, 2001; Shanley et al., 2007; 
Skjærvø & Røskaft, 2013). However, these populations are rare in comparison to skeletal 
collections, and all such groups are affected in some way by contact with the modern world, so 
there is great need to test these hypotheses using prehistoric populations that lived in social 
and physical environments more similar to those where these features evolved (Austad, 1994). 
To do so requires more accurate, precise, and unbiased age estimates than are possible using 
existing methods. For example, one critical assumption of the grandmother hypothesis is that 
females in the prehistoric past commonly lived long enough to experience menopause (Austad, 
1994), which currently cannot be evaluated for most of human existence. This is also true for 
investigations of non-adaptive menopause hypotheses that assume that lengthening of the 
human adult lifespan has occurred over the past several centuries (Austad, 1994). 
 
Moving Forward: This Dissertation & the NIJ Project  
 
This dissertation is a complementary component of the NIJ-funded international research effort 
that is simultaneously grappling with the statistical, osteological, and technological challenges 
of the adult age-estimation problem (see Chapter 4). Both this dissertation and the larger 
project take the position advocated by one of the founders of forensic anthropology, T. Dale 
Stewart (1958, p.144) that “there seems little doubt that every part of the skeleton carries sign 
of ageing although as yet almost all of them remains to be full identified and analysed [sic] for 
practical application.” Because different skeletal features are likely to reflect various aspects of 
the aging process depending on their position, structure, and function within the body (İşcan & 
Loth, 1989), using information from the entire skeleton, rather than a single region is likely to 
produce better results.  
 
To improve adult age estimation, what is needed is a suite of skeletal characteristics that 
collectively demonstrate age-related variation for the entire adult lifespan, a more sophisticated 
way of capturing this information, and a method for producing individualized age estimates with 
associated measures of certainty. The statistical framework of the original TA method (Boldsen 
et al., 2002) derives age estimates from dozens of independently scored traits while 
addressing many of the statistical issues present in other methods. Thus, the extension of this 
procedure to features distributed throughout the skeleton, especially those providing 
information in middle to old age, is a logical next step in the quest to improve adult age 
estimates.  
 
The first three phases of this dissertation focus on the identification and testing of skeletal 
features that provide relatively consistent age-related information in six diverse groups of 
individuals of European ancestry born over several hundred years. The age-estimation 
procedure developed in Phases 1 and 2 is investigated using both modern and historical 
skeletal samples in Phase 3. In Phase 4, the best-performing variation of the new TA age-
estimation method, based only on the European samples evaluated in the previous phase, is 
applied to two Danish archaeological samples. Because the success of paleodemographic 
investigations ultimately depends on the accuracy of the input data used in the analysis, 
Phase 4 focuses on the performance of commonly used age-estimation methods, existing TA, 
and the new TA procedure. The implications for all bioarchaeological and paleodemographic 
studies that rely on skeletal data are discussed.  
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CHAPTER 3: PHASE 1—PRELIMINARY TRAIT IDENTIFICATION & REFINEMENT 
USING NORTH AMERICAN SAMPLES 
 
 
Age-estimation papers for subadults tend to focus on overall patterns in the skeleton or 
dentition, while those for adults are heavily weighted towards the development, testing, and 
refinement of procedures based on relatively few features. The regions of the adult skeleton 
that receive the greatest attention are those that experience numerous changes throughout life, 
which can be divided or grouped in a variety of ways. The ongoing cycle of feature 
investigation, method creation, validation, and revision has resulted in many publications 
focusing on the cranium, pelvis and ribs. Appendix A is an extensive, but not exhaustive, list of 
over 200 publications related to the regions of the skeleton most commonly used for adult age 
estimation.6 The list includes general investigations of age-related skeletal variation, methods 
for the estimation of age, validation studies, and forensic and archaeological applications of 
specific techniques. Disappointingly, as studies investigating standard skeletal features have 
proliferated, so too has evidence for deficiencies in the existing techniques and the ways in 
which they are applied (Falys & Lewis, 2011; Garvin & Passalacqua, 2012). 
 
The most notable weakness of standard methods is ubiquitous age-estimation bias. Existing 
methods tend to slightly overestimate age for young adults, but work reasonably well for 
individuals under around age 40. After this time, however, essentially all existing techniques 
underestimate age for the rest of the adult lifespan. This systematic age-estimation bias is the 
result of both statistical and biological issues in existing techniques. One long-recognized 
statistical culprit is that age intervals and point estimates, usually means or midpoints, are 
directly influenced by the age composition of the reference sample originally used to document 
the phases or individual features of each method (Bocquet-Appel & Masset, 1982; Buckberry, 
2015; Konigsberg & Frankenberg, 1994). However, even if this statistical problem is eliminated, 
age-estimation bias will remain because the skeletal features used in existing techniques fail to 
keep pace with chronological age after around age 50 (Milner & Boldsen, 2012c; Saunders et 
al., 1992). Furthermore, what little age-related variation is present in the sutures, ribs, and 
pelvis is masked when age-informative features are combined into phases or summed scores. 
Aggregating traits into multidimensional stages also increases error between observers and 
ignores potentially significant inter- and intra-individual skeletal variation (Algee-Hewitt et al., 
2013; Kimmerle, Prince, & Berg, 2008). 

Impractically large age ranges, relatively low accuracy, and age-estimation bias make existing 
techniques inadequate for many medicolegal and archaeological applications. To resolve these 
issues, both the biological and statistical components of the age-estimation problem must be 
addressed. The goal of Phase 1 is to identify and define a set of age-related skeletal features 
throughout the skeleton that collectively provide information for the entire adult lifespan (15-105 
years). Traits are first identified and refined in multiple rounds of preliminary investigation 
before a much larger, primary dataset is collected from North American and European 
individuals born in the nineteenth and twentieth centuries. Collaborative work with an 
international research team investigates and refines these features using populations from 
three additional continents as part of Phase 2. A quantitative framework for combining a subset 
of these features is tested in the validation study in Phase 3 and applied to archaeological 
samples in Phase 4.  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 	
  A multitude of conference presentations, Master’s theses, and PhD dissertations related adult skeletal age 
estimation were not included in this list. An exception was made, however, for two theses (Baker, 1984; Masset, 
1982) that are commonly cited in relevant publications and reference manuals.	
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Identifying and Defining New Age-Informative Skeletal Features 

Beginning in 1996, Dr. George Milner (Penn State) and Dr. Jesper Boldsen (University of 
Southern Denmark) began collaborative work on the adult skeletal age-estimation problem. A 
primary objective of their work was to address the systematic age-estimation bias that plagues 
all adult age-estimation methods. Because it was commonly believed that inaccuracy and age-
estimation bias were primarily the result of statistical flaws and not the skeletal features used, 
the initial work focused on developing a new analytical approach for the pubic symphyses and 
auricular surfaces. The cranial sutures were also included despite their well-known limitations 
because isolated crania are often recovered in archaeological and forensic contexts. The three 
areas of the skeleton were separated into components and age information from each of the 
scores was combined using a new statistical framework that they called Transition Analysis 
(TA) (Boldsen et al., 2002). This technique represented a promising advancement. However, in 
the decade that followed, Milner recognized that osteologists with extensive skeletal 
experience were able to produce adult age estimates with greater accuracy and less bias than 
existing techniques, including TA. These experience-based estimates provided the first 
evidence that significantly more age-related variation exists in the adult skeleton than is being 
effectively captured by existing techniques. Because experience-based age assessments 
perform similarly well for the entire adult lifespan, deconstructing the components of these 
estimates is a logical first step towards producing unbiased age estimates for all of adulthood. 

Starting with a list of potentially age-related features compiled during their initial work, Milner 
and Boldsen collaborated with members of their informal research team over the next decade 
to define over 75 traits that could possibly be contributing to experience-based estimates. 
These traits include, among others, the presence and development of exostoses, osteoarthritic 
changes in synovial joints, and modifications of bone texture and shape. Milner and other 
members of the research team, including Svenja Weise, Peter Tarp, and myself, independently 
carried out preliminary investigations and refinement of some traits in small forensic and 
archaeological samples as funding and time permitted. Some of the traits have previously been 
investigated by other researchers in small or regionally-specific samples (e.g, Albert & Maples, 
1995; Black & Scheuer, 1996; Calce, 2012; DiGangi et al., 2009; Graves, 1922; Passalacqua, 
2009; Rissech, Estabrook, Cunha, & Malgosa, 2007; Scoles, Salvagno, Villalba, & Riew, 1987; 
Snodgrass, 2004; Van der Merwe, Işcan, & L'Abbè, 2006). No study, however, has looked at 
such a wide variety of features, or has examined traits from many parts of the skeleton 
simultaneously.   

This dissertation investigates the variation present in a wide array of features in a large, 
temporally diverse sample. This work is further developed and expanded to an even larger, 
geographically heterogeneous sample of modern populations in the collaborative NIJ-funded 
project (Co-PIs: Milner, Boldsen, and Ousley) where I am currently employed as a research 
assistant. Chapter 4 provides an overview of the NIJ project.  
 
Using logistic regression to select new age-informative skeletal traits  
	
  
Analyzing individual skeletal features or aggregated groups of them (i.e., phases) using simple 
statistical measures, such as means and standard deviations, results in large, overlapping age 
ranges (see Figure 2.0). Binary features—those scored as only present or absent—analyzed in 
the same way produce even wider age ranges that contribute little to the estimation of adult 
age. Additionally, simply calculating the mean age of individuals with and without a trait only 
provides information that is directly influenced by the age distribution of the reference sample. 
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If an alternative reference sample was selected containing a different proportion of young or 
old individuals, the point ages and ranges assigned to each of the traits would also differ. 
Although now a widely acknowledged fact, this issue and its implications for paleodemography 
caused significant controversy when first introduced by Bocquet-Appel and Masset (1982) in 
their paper “Farewell to Paleoodemography.” In their article, the age distributions of several 
samples used to develop commonly used methods were juxtaposed with the age distributions 
produced for other samples analyzed using each of the techniques; this direct comparison 
demonstrates the biases imposed by the reference sample on the age estimates produced.  
 
One of these examples—the McKern and Stewart (1957) method—has become the classic 
example of reference sample mimicry. This component-based pubic symphysis age-estimation 
method was originally developed using a sample of deceased American servicemen from the 
Korean War (McKern & Stewart, 1957). As would be expected for a group selected from active-
duty soldiers, the sample was heavily weighted towards young men between the ages of 18 
and 40. As a result, the method works well for younger males, but it cannot be applied to older 
individuals without producing significantly biased results. This is simply because the age 
intervals for each summed component score are directly based on the distribution of the traits 
seen in the original reference sample, which did not include any individuals over 50 years. In 
other words, the point ages and ranges for each skeletal score are lower than they would be if 
the entire adult age range were represented in the reference sample. This is especially true of 
features, such as breakdown7, that most often occur in individuals who are middle-aged or 
older. If this method was used to estimate the ages of individuals whose true ages spanned all 
of adulthood, the resulting age distribution would be skewed to resemble the reference sample. 
The issues and implications of biases imposed by reference sample composition have also 
been discussed more generally by many authors (e.g., Buikstra & Konigsberg, 1985; Hoppa & 
Vaupel, 2002; Konigsberg & Frankenberg, 1992; Van Gerven & Armelagos, 1983). 
 
One simple approach for dealing with reference sample mimicry is to estimate the probability of 
a trait existing in an individual of each age in a population rather than relying directly on the 
trait’s distribution in a reference sample (Boldsen et al., 2002; Buckberry, 2015; Chamberlain, 
2006). Although the process of data collection for this probabilistic approach and traditional 
methods is similar, the way in which these data are analyzed and the age estimates generated 
from them are fundamentally different. In both cases, a skeleton in a reference sample only 
provides a single datapoint—a trait, phase, or component score at their particular age-at-death. 
In each skeleton, we cannot know when the individual first developed those features or when, 
or if, the additional features would have appeared if the person had not died. For traditional 
methods, this means that the point age and range associated with each features are based 
directly on the distribution of ages associated with the trait scores of deceased individuals from 
the skeletal reference sample. As discussed above, this approach results in biased estimates 
of age if the age distribution of the reference sample does not match that of the target 
population, or if the sample size is small, which is often the case. 

The alternative approach advocated here is to use logistic regression—a type of analysis that 
models the probability of an event occurring based on the values of an independent variable—
to model a probability distribution for each trait. A logit or probit model fitted to a large sample 
of binary trait data from a known-age reference collection provides the probability of a feature 
being present or absent at every age across the adult lifespan. Rather than simply calculating 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 Breakdown is considered the terminal category of the metamorphosis of the ventral and dorsal margins of the pubic 
symphyseal face that is characterized by pitting, erosion, or irregular bone growth that destroys the regular raised rim 
of the previous phase. It is the final stage (5) of McKern and Stewart’s (1957) pubic symphysis component III. 
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the average age of individuals with and without the trait, the model estimates the likelihood of 
an individual of every age in the population having the feature. The larger the reference 
sample, the more precisely the model can estimate the age at which a feature is most likely to 
develop. The age at which an individual is equally likely to have or not have developed a 
feature is commonly referred to as the age-of-transition (i.e., the point at which the feature 
likely “transitions” from being absent to present in a population based on the logistic model 
fitted to the data using maximum likelihood estimation). The model takes the form of an “s-
shaped” or sigmoid curve whose slope characterizes the age information present in a feature— 
the steeper the curve, the more informative the feature is about age.  

Probability, Odds, and the Link Function 

To understand logistic regression as it is applied here, it is critical to understand the difference 
between probability and odds. A probability is calculated by dividing the outcomes of interest 
by all possible outcomes. For example, the probability (p) of rolling a one on a standard six-
sided die is one out of six or (0.167). Although probability and odds are often used colloquially 
to mean the same thing, odds are actually a ratio of probabilities. Odds are calculated by 
dividing the probability of an event occurring (p) by the probability that it will not occur (1-p). In 
the die example, the probability of rolling a one is one out of six (0.167), while the probability of 
not rolling a one is five out of six (0.833). Thus, the odds are (0.167) divided by (0.833) or 0.2. 
The importance of this will be discussed shortly.  

The goal of a logistic regression model is to be able to estimate the probability of an event 
occurring based on the value of an independent variable. In this case, the independent variable 
is chronological age and the dependent variable is a binary skeletal trait. As previously 
discussed, each skeleton can have only one observation for a particular trait. Therefore, the 
score for each skeleton in the sample can be thought of as a Bernoulli trial—a random 
experiment in which there are only two possible outcomes and the probability of success (p) is 
the same for each independent trial (Ross, 2010). When a series of Bernoulli trials are 
combined, their outcomes are distributed as a binomial random variable with the parameters 
representing the number of trials (n) and the probability of success (p) (Ross, 2010). A 
common example of a Bernoulli trial encountered in everyday life is a coin flip; there are only 
two outcomes8—“heads” or “tails.” In the case of a fair coin, the probability of obtaining heads 
is 0.5, as is the probability of obtaining “tails.” The outcomes of a large number of coin flips are 
distributed as a binomial random variable with the probability of “success” equal to 0.5 (Ross, 
2010). Unlike this coin flip example, the underlying probability of a skeletal trait being present in 
the population is unknown; this is precisely what is being estimated using a large sample of 
independent skeletal “trials” and logistic regression.  
 
To model the probabilistic relationship between the independent variable (age) and the 
dependent variable (trait score) a mathematical function is needed. Here the logit—the natural 
log of the odds—is used (Equation 3.0).  
 
 
𝑙𝑜𝑔𝑖𝑡 𝑝 = ln 𝑜𝑑𝑑𝑠 =   𝑙𝑛 !

!!!
= 𝑙𝑛 !"#$%$&'&()  !"  !"#$!  !"#$#%&)

!"#$%$&'&()  !"  !"#$!  !"#$%&
       (3.0) 

 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 Excluding the improbable case where the coin lands perfectly on its side. 
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The logistic regression is equivalent to a linear combination of the independent variables. So, 
in this case, the natural log of the odds is equal to a constant (β0) plus a coefficient (β1) that is 
multiplied by age (Equation 3.1)(Agresti, 2007a). The model constant (β0) and the coefficient 
for age (β1) are found through maximum likelihood estimation. Here it is sufficient to say that 
this is accomplished by computer software iteratively testing different parameters until the 
values that maximize the likelihood function are found. If the natural log of the odds of (p) is 
considered to be the response variable (y), the form of the equation is identical to that of a 
standard linear regression y = β0  + β1x. 
 
 
𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛 𝑝

1−𝑝 =   𝛽! +   𝛽!𝑥   +   𝜀  = constant  +  (coefficient*age)  +  error  term   (3.1) 
 
 
The error term (ε) is assumed to be independent of age. Importantly, the value for the 
coefficient (β1) in this model is in terms of the log odds per year, not in terms of probability. This 
distinction is important because although the change in the log odds is the same for each 
interval of age, the probability of a feature being present changes non-linearly over the lifetime. 
As described in more detail below, it is precisely this probabilistic change throughout adulthood 
that allows relatively low-information skeletal features to collectively contribute substantially to 
adult age estimation.  
 
To calculate the probability of a feature being present at each age from the fitted logit model, 
an additional step is needed. Taking the inverse of Equation 3.1 (i.e., the inverse logit) will 
produce Equation 3.2 (Agresti, 2007b), which is the general formula for the probability of a trait 
being present at a particular age. Using the estimated values for (β0) and (β1) to calculate the 
value of the function at each age generates a curve showing the probability of the trait existing 
across the lifespan. Because the feature scores are binary, subtracting the calculated 
probability from one will give the probability that a trait is absent. 
 
 

𝑃𝑟 𝑦 = 1     𝑥) = estimated  probability  of  trait  being  present  (1)  at  age  (x)  =  !(!!!  !!!)

!!  !(!!!  !!!)
  (3.2) 

 
 
Figure 3.0 shows examples of logistic curves (solid black lines) for simulated trait data (black 
circles). The black dashed lines show an approximate 95% confidence interval for each curve. 
The vertical black dotted line indicates the median, or “age-at-transition.” Although the plots 
were generated from simulated data, all curves except for (a) and (f) are similar to those 
commonly calculated from actual data. Plot (a) is extreme case that never occurs in adult 
skeletons; it is included to illustrate the principle of logistic regression. All individuals (black 
dots) under 45 years of age do not have the trait, while all individuals above this age do. The 
fitted logistic curve (solid black line) predicts that sometime after turning 45 the trait begins to 
form, and by age 46 all individuals will have the feature. The 95% confidence interval (black 
dashed lines) is narrow and essentially vertical because there is complete separation of the 
data between 45 and 46 years. Plot (b) shows a curve similar to those often seen for traits that 
occur in the late teens, twenties, and early thirties such as medial clavicle epiphysis fusion. In 
this case, the slope of the curve is steep and the median of the fitted regression (vertical dotted 
line) indicates the age at which it is equally likely for the trait to be absent or present. Because 
these curves provide probabilistic information for all of adulthood, even curves that span half, 
or more, of the adult lifespan, such as d, e, and f, are potentially useful. 
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Three of the plots from Figure 3.0 (c, d, and f) are shown again in Figure 3.1 (top row) with 
plots showing the transition curves for both the absence and presence of a trait (bottom row). 
In this direct comparison, it is easier to see that the estimated age-at-transition (vertical dotted 
line, top row) is the age at which a trait is equally likely to be present or absent (horizontal 
dotted line, bottom row). Because each feature is binary, as the probability of the trait being 
absent decreases, the probability of the trait being present must increase accordingly. Although 
individually each curve provides only broad age information, these curves become useful when 
transitions that collectively occur in all parts of the adult lifespan are identified and assessed in 
large skeletal samples, as will be described further in Chapter 4.  
 
 

 
 
Figure 3.0. Example logistic curves with transitions in differ parts of the adult lifespan Fitted logistic models (solid 
black lines) with approximate 95% confidence intervals (dashed black lines) and estimated ages-at-transition (vertical 
dotted lines) based on simulated trait data (black dots). 
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Figure 3.1. Example transition plots from Figure 3.0 (a1, b1, and c1), shown with the logistic curves for both the 
presence and absence of a trait (a2, b2, and c2). The estimated age-at-transition (top row, vertical dotted line) is the 
point at which there is an equal probability of a trait being absent (bottom row, dashed curve) and present (bottom 
row, solid curve).  
 
	
  
Data Collection 
 
Well-documented skeletal collections are in high demand from researchers around the world. 
For most collections, applying for access to skeletal samples must take place well in advance 
of data collection and scheduling and negotiations can take upwards of several months. Once 
the terms of use are negotiated and access is granted, the actual process of travel and data 
collection is a time consuming and costly endeavor. 
	
  
Between 2012 and 2014, I collected a large data set from four well-documented North 
American skeletal collections as part of Phase 1 (Table 3.0). However, before primary data 
collection commenced, seven rounds of preliminary data collection, analysis, and procedural 
refinement were undertaken at the William M. Bass Donated Collection to identify and refine 
new skeletal traits and improve scoring procedures before resources were invested in smaller 
and more geographically distant skeletal samples. The first two rounds of preliminary data 
collection were completed by George Milner prior to 2012, with the additional five rounds 
completed as part of this dissertation.  
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Pilot study & preliminary data collection  
 
In August 2012, a one-week pilot study, the first preliminary round of data collection for this 
dissertation, was conducted at the Bass Collection. This trip had four main objectives: 1) to 
become familiar with general age-related changes in the adult skeleton, 2) collect data on 51 
features from the original list generated by the research team, 3) generate a list of new 
potentially age-informative traits, and 4) establish a baseline for a novice researcher’s ability to 
subjectively estimate age from the skeleton. Objectives one through three are key components 
of trait identification and refinement, while objective four relates to a different component of this 
research that will be discussed in more depth in Chapter 5.  

Before arriving at the Bass Collection, an age-balanced sample of 100 individuals drawn from 
five-year age categories was selected from all available white males and females in the 
collection. Although a precisely age-based sample is not critical for this preliminary work, a 
sample selected in this way ensures that the entire age range represented in the collection will 
be observed. Prior to the start of data collection any demographic information, including age 
and sex, present on the outside of the box for each individual in the preselected sample was 
covered. If an individual could not be scored, either because the remains were unavailable for 
study or the majority of the features could not be observed, another individual from the same 
five-year age category was selected and mixed into the remainder of the preselected sample to 
ensure blind data collection. On days one through four, 105 individuals were scored for 51 
unique skeletal features. On days four and five, an additional 19 individuals were selected to 
represent the entire adult lifespan and were examined in detail to search for additional traits 
that potentially exhibit age-related variation.  

Data were collected for each skeleton on paper forms and entered into Excel after returning 
from the field. Traits with more than two categories were recoded electronically as dichotomous 
variables. For example, a trait with three possible scores—absent, greater than or equal to 
one-half (≥1/2), or complete—would be analyzed as two separate binary features: absent 
versus (≥1/2) and (<1/2) versus (≥1/2). The binary scores were analyzed using both a 
generalized linear model (GLM) fitted with the glm() function, a standard part of the program R, 
and a generalized additive model (GAM) generated with the gam() function in the R package 
mgcv (R Core Team, 2012; Wood, 2004; Wood, 2006). Graphical visualizations of both models 
were used to evaluate the potential age-related data present in each trait variant. Although the 
construction of the two models differs significantly, their graphical interpretations are similar. At 
this preliminary stage of analysis, it is simply important that the binomial logit model produces a 
single constant and coefficient that describe how the probability of having a feature changes 
over the adult lifespan. In contrast, the gam() function fits a curve to different segments of the 
data and, depending on the degree of smoothness selected, allows for a more complex 

Table 3.0. North American skeletal collections used in Phase 1 

Skeletal Collection Location Collection Origin Ancestry Place of Birth 

WM Bass Donated Knoxville, TN donated/forensic white USA 

Maxwell Museum Albuquerque, NM donated/forensic white USA 

UI-Stanford Iowa City, IA anatomical donations white Europe, USA 

JCB Grant Toronto, ON anatomical donations white Canada 
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function. In some cases, the bumps and dips allowed for in the generalized additive model may 
represent real and ultimately important underlying features of the data. However, in small 
samples these model features may just as easily represent noise in the data. Further 
discussion of these models and their effects on maximum likelihood age-at-death estimates are 
found in Chapters 4 and 5. 
 
Evaluating Fitting Models Using Transition Plots 
 
Once a model is generated, the results can be classified as one of three patterns: 1) the binary 
trait scores had a strong relationship with chronological age, 2) scores showed a possible 
relationship to age with a general trend of older individuals having older character states, or 3) 
scores had no apparent relationship with age with both trait categories being evenly distributed 
across the entire lifespan. The potential value of each trait was assessed by looking at both the 
logistic and general additive model curves while taking into account the age distribution of 
individuals with each score. Based on these data, features were 1) accepted with no 
modifications, 2) modified to better capture biologically meaningful categories, or 3) eliminated 
from future study. Because samples sizes in all of the preliminary investigations were small—at 
most several hundred individuals—decisions to revise or eliminate features relied more heavily 
on the distribution of trait scores than on the fitted curves. Trait categories were eliminated if 
they contained no age-related variation or could not be reliably scored, even after several 
rounds of refinement, and additional categories were added as they were identified. Trait 
definitions were refined and elaborated based on personal experience with the features to 
improve scoring reliability. In general, traits were first tested using relatively nebulous binary 
categories, which were then divided into multiple, more explicitly defined variants as the extent 
of trait variation became clearer with experience. Ultimately, many of the variants were 
collapsed to reform binary trait categories with well-defined thresholds.  

Figure 3.2 shows a schematic overview of the trait evaluation, refinement, and selection 
process. The cycle begins with trait identification and definition (Figure 3.2, upper left). In each 
iteration of data collection, traits with strong age-related patterns are retained, while traits that 
provide little to no age information are revised for one or more rounds of data collection before 
being eliminated if strong age-related patterns fail to emerge. The process ends when a suite 
of traits that provides information across the entire adult lifespan has been identified (Figure 
3.2, upper right). Table 3.1 shows the samples used, the number of traits and transitions 
identified, and the features eliminated after each round of analysis. 
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Figure 3.2. Schematic of the trait identification and refinement process in Phase 1, beginning with trait identification 
and definition (upper left) and ending when a suite of traits that provides information across the entire adult lifespan 
has been identified (upper right). 
	
  
	
  

Table 3.1. Summary of the Phase 1 trait identification & refinement process 
   Skeletal Sample  Traits 

Collection Date  N M F  New Used Transitions Eliminated 
Bass 08/12 - 08/17/12  124 66 58  --- 50 79 7 
Bass 05/12 - 05/24/13  122 60 62  26 69 176 9 
Bass 06/17 - 06/21/13  101 44 57  2 62 137 3 
Bass 07/22 - 08/02/13  196 91 105  7 66 162 6 
Bass 08/05 - 08/30/13  500 272 228  0 60 151 8 

Maxwell 04/17 - 05/02/14  170 101 69  1 53 104 0 
UI-Stanford 07/14 - 07/18/14  149 129 20  0 53 105 0 

Grant 08/05 - 08/15/14  191 175 16  0 53 105 8 

Final ---  1553* 938 615  45 --- 80 --- 

* representing 1,119 unique individuals from four reference collections 
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In the first round of preliminary data collection (i.e., the pilot study), twenty-six new skeletal 
features were identified and defined for future data collection and seven traits were eliminated 
(Table 3.1). The first four rounds of data collection and analysis followed the same process of 
data collection, analysis, and trait refinement described above. The fifth round of data 
collection lasted six weeks and included both the final round of preliminary trait refinement and 
the beginning of primary data collection. Data were collected for two weeks and analyzed in 
week three when a final set of features to be assessed in all four of the samples was selected. 
These features were evaluated at the Bass Collection in weeks four through six, and at the 
three remaining collections during the following year. Although 1,553 sets of data were 
examined in Phase 1, these data represent only 1,119 unique individuals; some skeletons from 
the Bass Collection were included in more than one preliminary sample because there are a 
limited number of individuals in the youngest and oldest age categories. 
 
Primary data collection 
	
  
The five rounds of preliminary data collection focused on refining features so they would be 
quick and easy to score. Whenever possible, the number of variants was reduced or the 
thresholds needed for a trait to be present were adjusted to clarify scoring descriptions with the 
intention of reducing observer error (Shirley & Ramirez Montes, 2015). Consideration was also 
given to selecting features that are often preserved in archaeological and forensic settings, 
which increases the probability that age estimates can be generated from partial remains.  

All individuals in the primary sample were born in the nineteenth or twentieth centuries, have 
well-documented age-at-death, and are of European (i.e., white) ancestry. Because of their 
common ancestry, the individuals likely share some measure of underlying genetic similarity, 
but were intentionally chosen to represent as heterogeneous a group as possible in other 
respects. To address the potential issue of secular change in skeletal aging, the primary 
reference sample is divided into two “death cohorts”: 1) pre-1953—individuals who died 
between 1924 and 1952 and 2) post-1981—individuals who died between 1982 and 2013. 
Although a somewhat messy distinction, the time period just following WWII is generally 
regarded as the beginning of a new age of change for epidemiology, medical technology, 
public sanitation, and food processing and distribution (Susser, 1985). The division into two 
death cohorts separates the sample into groups that, on the whole, lived with substantively 
different nutrition and ability to combat infectious disease. 

Individuals in the pre-1953 death cohort lived most or all of their lives during a time when 
infectious diseases such as tuberculosis, pneumonia, influenza, typhoid, dysentery, diphtheria, 
pertussis, measles, polio, and syphilis were not uncommon (Armstrong, Conn, & Pinner, 1999). 
Although a number of vaccines were developed prior to 1900, including those for smallpox, 
cholera, rabies, and plague, they were not used widely enough to control disease for at least 
several decades into the twentieth century (Centers for Disease Control and Prevention, 1999). 
Deaths in the pre-1953 cohort were dominated by infections, accidents, and other ailments, 
such as strokes, heart disease, cancers, liver disease, and diabetes.  

In the years following WWII, medical technology improved and infectious diseases declined 
with the discovery and wide distribution of new antibiotics, the development of vaccinations and 
associated distribution programs, and better sanitation practices. Individuals in the post-1981 
death cohort had the benefit of sulfonamides, antibiotics, and antimycobacterials that were first 
used to treat many diseases in the 1930s and 1940s (Armstrong et al., 1999). Their population-
level disease exposure was also greatly reduced by the development and widespread 
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application of vaccines for pertussis (whooping cough) (1926), tetanus (1927), polio (1955), 
measles (1964), mumps (1967), and rubella (1970) (Centers for Disease Control and 
Prevention, 1999; Cutler, Deaton, & Lleras-Muney, 2006). 9  Other medical advancements, 
including safer forms of anesthesia, fluid and electrolyte replacement therapy, blood typing and 
blood banks, chemotherapy, and cardiac surgery with the use of a heart-lung bypass machine, 
also became standard parts of the medical arsenal in the second half of the twentieth century 
(Fou, 1997; Guyer, Freedman, Strobino, & Sondik, 2000; Susser, 1985). After 1950, the United 
States also saw the widespread adoption of water treatment practices, including filtration and 
chlorination, the formation of local and state level health departments with programs for solid 
waste disposal and public hygiene education, and new social programs aimed at improving the 
lives of the poor and elderly (Binstock, 1991; Cutler & Miller, 2005; Guyer et al., 2000; Warner, 
2012). Major changes to the way food was processed and transported also occurred. These 
included improvements in heat processing and canning, the ability to easily freeze and 
refrigerate food, and an explosion in the ingredients and additives available to food 
manufacturers. Combined with the substantial development of the US Interstate Highway 
system by the mid-to-late 1960’s, these developments brought substantive changes to the 
average American diet (Weber, 2012; Welch & Mitchell, 2000) . 

Although exact life-history information for each individual is unknown, it is safe to assume that 
the death cohorts differ simply by virtue of variation in available foods, advancements in 
medical care, and changing social and economic conditions in the different locations over the 
one-hundred and fifty years when these individuals lived and died. Furthermore, it can be 
reasonably assumed that, collectively, these samples encompass a large fraction of the 
variation that can be expected in any European population. This approach of combining 
multiple samples is the most conservative one because it creates as large and diverse a 
reference sample as possible within a single broad ancestral category (Konigsberg, Herrmann, 
Wescott, & Kimmerle, 2008; Milner & Boldsen, 2012b; Townsend & Hammel, 1990). In many 
forensic situations, and essentially all archaeological ones, it is impossible to identify which 
regional or population-specific reference sample would be the most appropriate, so a widely 
applicable combined reference sample is desirable. While this approach is likely to decrease 
the precision of individual age estimates, the increase in applicability without sacrificing 
accuracy is desirable.  
 
Skeletal collections  
	
  
The William M. Bass Donated Skeletal Collection at the University of Tennessee was 
established in 1981 and new individuals are added as they become available. The Bass 
Collection is currently composed of over 1200 individuals, mostly of European ancestry, with 
the vast majority born after 1940; it is the largest, well-documented skeletal collection of 
modern people in North America. All individuals have been donated to the facility by individuals 
prior to their deaths, by family members, or by the local Medical Examiner (Forensic 
Anthropology Center, 2012). Age, sex, ancestry, and cause of death are available for almost all 
individuals, and additional data, such as birth information, medical history, occupation, socio-
economic status, and habitual activities are available for most individuals after 1999.  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 Although it was not officially eradicated in the US until 1977, smallpox was not a significant public health concern in 
the US in the late nineteenth and early twentieth centuries; however, outbreaks did occasionally occur, particularly 
among immigrant populations and the poor (Centers for Disease Control and Prevention, 1999; Colgrove, 2006). The 
smallpox vaccine was not produced in Ontario, Canada, until 1886 and outbreaks were common in this area until they 
were brought under control in the 1920s (Archives of Ontario, 2012a, 2012b). Although the extent to which the 
individuals in the first death cohort were impacted by smallpox is unknown, the samples from the UI-Stanford and 
Grant collections represent populations that were potentially at risk for exposure and infection. 
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The Maxwell Museum Donated Skeletal Collection at the University of New Mexico was 
established in 1984 and is an active collection with new individuals added as donations are 
made. The collection currently contains approximately 300 individuals who died in the 
Albuquerque area and were donated by the individual before death, by the deceased’s family, 
or by the Office of the Medical Investigator (Maxwell Museum of Anthropology Laboratory of 
Human Osteology, 2010). In addition to basic demographic data, including age, sex, self-
identified ancestry, and cause-of-death, health and occupational data have been requested for 
donations made since 1995.  

The University of Iowa-Stanford Collection is composed of over 1,100 individuals who died in 
the San Francisco Bay-area and were donated for medical study in the 1920s through the early 
1950s. The collection was officially transferred from Stanford University Medical School to the 
University of Iowa and the Office of the State Archaeologist (OSA) in 1998 (University of Iowa 
& Office of the State Archaeologist, 2012b). Between 2000 and 2002, a National Science 
Foundation Grant (NSF) for the conservation of the collection funded the reassessment of 
donation documentation and the rehousing of individuals into archival-quality polypropylene 
storage containers for long-term curation (University of Iowa & Office of the State 
Archaeologist, 2012a). The information available for many individuals is extensive, particularly 
considering that it was collected in the first half of the twentieth century, and includes birth 
date, birthplace, death date, age, occupation, residence at death, birthplaces of parents, and 
cause of death. This collection is a rare example of well-documented sample of individuals who 
lived and died at a time when antibiotics and most modern medical treatments were not yet 
available. This makes the sample particularly attractive for the investigation of features that will 
be useful for the estimation of age in individuals from the historic and prehistoric past.  

The J.C.B. Grant Collection is composed of 202 individuals who were donated to the University 
of Toronto Department of Anatomy between 1928 and the early 1950s. The majority of 
individuals were donated from local hospitals and welfare institutions, and many were 
transients, migrant workers, or recent immigrants (Bedford et al., 1993). The number of 
individuals donated was originally much larger but, in 1948, all individuals whose age-at-death 
could not be verified through checks with vital statistics records, hospital records, or personal 
history provided by the individual prior to death were removed from the collection (Bedford et 
al., 1993). Documentation for each individual includes name, sex, age-at-death, and cause of 
death. The individuals in this collection lived contemporaneously with those in the UI-Stanford 
collection, but are a separate North American sample with potential differences in genetic 
composition, habitual activities, socio-economic status, and diet.  

All individuals who met the selection criteria (i.e., well-documented ancestry, sex, and age-at-
death) were analyzed from the Grant and UI-Stanford collections. For the Bass and Maxwell 
Museum collections, an attempt was made to select an equal number of individuals from all 
five-year adult age categories. However, essentially all skeletal collections have fewer 
individuals in the youngest and oldest age categories than in middle age, so individuals 
between 50 and 80 years of age are over-represented in the final skeletal sample. Females are 
also less frequent in many documented skeletal collections, particularly those formed at 
medical schools in the early-to-mid twentieth century, so the final sample is more heavily 
weighted towards males. Table 3.2 shows the collections, sample sizes, and range of birth and 
death years in each of the samples. Figure 3.3 shows the age and sex composition of the 
combined sample with fitted normal distributions. Both distributions are slightly left skewed with 
females being slightly older on average (N=333, mean=65.7 years, SD=17.7) than males 
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(N=677, mean=61.7 years, SD=16.8). Figure 3.4 shows the age and sex distribution of the 
sample analyzed from each of the four collections and in the two death cohorts. 
 
 

 
 

 
 
Figure 3.3. Age distributions of males and females in the Phase 1 primary reference sample. 
 
 
Although usually not viewed as an advantage, there is reason to believe that because the 
statistical approach used here does not depend directly on sample composition, having more 
individuals 50 and 80 years of age can only help to more effectively characterize the variability 
seen in this part of adulthood. This is because, on average, the more variability there is in a 
population, the larger sample you will need to effectively characterize it. It is commonly 
believed that skeletal variation increases throughout life making it impossible to estimate age at 
the upper reaches of adulthood (Franklin, 2010). However, published work showing the ability 
of existing TA and an experienced observer to predict age throughout adulthood indicates that 
this is likely untrue (Milner & Boldsen, 2012c). Additional data collected by the research team, 
including portions of this dissertation, support the notion that skeletal variation in age indicators 
is relatively low in the youngest ages where it is more tightly controlled by developmental 
processes, and also lower in the very old, potentially as a result of selective mortality. Although 
our discussion of the effects of selective mortality on skeletal variation is speculative at this 

Table 3.2. Phase 1 primary reference sample death cohort information 

Death Cohort Collections Birth Years Death Years N M F 

1: (Pre-1953) 
JCB Grant  1836 - 1922* 1928 - 1949 191 175 16 

UI-Stanford 1842 - 1907 1924 - 1952 149 129 20 

2: (Post-1981) WM Bass 1893 - 1990 1982 - 2012 500 272 228 
Maxwell Museum 1887 - 1975 1984 - 2013 170 101 69 

Combined --- 1836 - 1990 1924 - 2013 1010 677 333 

* birth years for the Grant Collection were estimated by subtracting the documented age of each individual from the 
range of years the collection was in operation 
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point, a growing body of data from this dissertation and the NIJ project indicates that this 
process could be significant for our understanding of adult aging. These effects could 
potentially play an important part in increasing variation in middle age where existing TA and 
expert age assessments perform the worst. Further discussion of potential selective mortality 
signals in the data and their impact on age estimation can be found in Chapter 4. 
 
 

 
 
Figure 3.4. Age distribution, by sex, of the individuals evaluated from each skeletal collection and death cohort. 
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Trait Selection  
	
  
In Phase 1, 100 traits, with almost 250 variants were investigated in eight rounds of data 
collection.10 A primary reference sample of 1,010 individuals was used to assess 53 traits using 
both logistic and generalized additive models. All data were analyzed collectively and by 
collection, sex, and death cohort. Figure 3.5 shows the key features of the transition plots used 
to evaluate the age-informative potential of each feature, including the age distribution of the 
trait scores, the shape of the regression curves, and the estimated age-at-transition.  
 
 

 
 
Figure 3.5. Key features of the transition plots used to evaluate Phase 1 traits. 
 
 
With the exception of two rib traits where sample sizes were extremely small, five plots were 
generated for each transition between binary trait categories: 1) total combined sample, 2-3) 
combined sample separated by sex, and 4-5) sample separated by death cohort. The 
combined sample includes all individuals from the four samples scored for the trait of interest. 
Separate models were then generated for males and females. The remaining two plots 
compare the trait scores of individuals in death cohort 1 (pre-1953) and death cohort 2 (post-
1981). Because of the small number of females who died in the first death cohort, males and 
females are not analyzed separately. Table 3.3 shows the sample size used to generate these 
models for each trait.  
 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 The exact number of traits and variants investigated is difficult to determine because of the overlapping nature of 
some features and the iterative nature of the trait refinement process (i.e., how much change must take place in a 
trait definition for it to be considered a “new” variant). Many areas of the skeleton were investigated for multiple 
features, including shape and textural changes, ossification of soft tissue structures, and combinations of these 
changes, often with several different metric and non-metric thresholds evaluated.  
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Table 3.3. Phase 1 primary reference sample trait analysis sample sizes 

 

 Combined     
Sample 

 Death Cohort 1  
(pre-1953) 

 Death Cohort 2 
(post-1981) 

Trait  F M N  F M N  F M N 
hyperostosis frontalis interna (HFI)  76 229 305  17 135 152  59 94 153 

parietal depression  304 484 788  17 135 152  287 349 636 
occipital condyle lipping  286 449 735  8 109 117  278 340 618 

R1 costal face  240 366 606  8 63 71  232 303 535 
R2 rim edge profile  190 232 422  1 3 4  189 229 418 

R310 rim edge profile  210 338 548  5 58 63  205 280 485 
R310 body thickness  301 474 775  10 110 120  291 364 655 

sternal central dorsal ridges  142 221 363  10 76 86  132 145 277 
trapezium lipping  255 570 825  34 280 314  221 290 511 

cervical lipping  300 493 793  13 134 147  287 359 646 
thoracic lipping  301 506 807  13 141 154  288 365 653 
lumbar lipping  289 498 787  12 138 150  277 360 637 

cervical candlewax  301 493 794  12 134 146  289 359 648 
thoracic candlewax  299 502 801  13 138 151  286 364 650 
lumbar candlewax  292 501 793  12 136 148  280 365 645 

C1 lipping  296 482 778  12 139 151  284 343 627 
C1 eburnation  293 477 770  11 135 146  282 342 624 

L5 superior margin  267 477 744  9  129 138  258 348 606 
L5 inferior margin  260 467 727  8 120 128  252 347 599 

S1 superior margin  258 470 728  13 143 156  245 327 572 
S1-2 fusion  296 523 819  17 173 190  279 350 629 

sacroiliac joint fusion  304 562 866  19 208 227  285 354 639 
clavicle medial epiphysis fusion  284 511 795  23 196 219  261 315 576 

clavicle medial bone growth  276 433 709  21 162 183  255 271 526 
clavicle lateral macroporosity  280 515 795  23 188 211  257 327 584 

scapula glenoid fossa margins  307 577 884  25 218 243  282 359 641 
humerus medial epicondyle  304 606 910  25 250 275  279 356 635 
humerus lateral epicondyle  312 606 918  27 249 276  285 357 642 

humerus lesser tubercle lipping  281 560 841  25 230 255  256 330 586 
humerus lesser tubercle bumps  281 560 841  25 230 255  256 330 586 

radius medial crest  301 631 932  32 281 313  269 350 619 
femoral fovea margin lipping  266 571 837  28 260 288  238 311 549 

femoral head surface  278 594 872  26 262 288  252 332 584 
trochanteric fossa exostoses  277 505 782  18 172 190  259 333 592 

medial trochanteric fossa exostoses  264 564 828  22 237 259  242 327 569 
acetabulum posterior margin lipping  300 599 899  26 251 277  274 348 622 

acetabulum articular surface bone growth  303 602 905  27 253 280  276 349 625 
pubic symphyseal collar  288 574 862  20 231 251  268 343 611 

ischium superior margin spur  313 608 921  27 255 282  286 353 639 
ischium bone growth  312 604 916  25 249 274  287 355 642 

AIIS exostoses  289 591 880  23 245 268  266 346 612 
humerus weight  327 662 989  35 293 328  292 369 661 

tibia weight  322 649 971  33 287 320  289 362 651 
innominate weight  313 484 934  28 271 299  285 350 635 
calcaneus weight  313 621 784  18 121 139  282 363 645 
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Appendix B contains the transition plots for each of the 45 features selected, including fitted 
models for the combined sample and subsamples separated by sex and time period of death. 
The left side is shown for bilaterally scored features unless otherwise noted. The vast majority 
of features have only two variants (absent and present), so only one group of transition curves 
are shown; however, several traits have three or four variants and thus have multiple sets of 
curves. For example, the medial clavicle has four variants (not fused, partially fused, remnant 
line, and completely fused), so the results for three binary transitions are shown. Because 
correlated traits are problematic, only one transition per feature is used in the final age-
estimation procedure tested in Phase 3. 
 
Trait examples and interpretation  
	
  
Traits that can be universally applied are preferred to those that require sex- or population-
specific standards, particularly for archaeological applications where an appropriate reference 
sample is often unavailable or unknown. The presence of raised, irregular bone growth on the 
lateral margin of the lesser tubercle of the humerus is an example of a trait with almost ideal 
characteristics (Figure 3.6). The humerus is typically well-represented in skeletal collections 
and the margin of the lesser tubercle is often preserved, even in fragmented remains. The 
combined sample size is sufficiently large and adequately covers the entire adult lifespan, 
resulting in a well-behaved (smooth) probability curve with narrow confidence intervals 
throughout adulthood. The trait also makes a full “transition” over the course of the lifespan. In 
other words, essentially all individuals under 40 years of age do not have the feature, while all 
those over 90 do. This means that both the absent and present categories can provide useful 
age information over the entire lifespan. Additionally, the curves for males and females have 
almost identical median ages and the two death cohorts are similar. The wider confidence 
interval and slightly broader slope for death cohort 1 is likely the result of too few individuals 
under the age of 50 in the reference sample. This issue influences of all curves generated for 
death cohort 1, so the age distribution of trait scores becomes particularly important for 
comparing traits between the two death cohorts. 
 
 

 
 
Figure 3.6. Transition plots for irregular bony growth on the margin of the lesser tubercle of the humerus. 
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The fitted models for anterior superior iliac spine exostoses, shown in Figure 3.7, are similar to 
those in Figure 3.6 except that slightly larger differences can be seen in the sex- and death 
cohort-specific models. The sex-specific sample sizes are reasonably large, 591 and 289 for 
males and females respectively, with adequate coverage of the entire lifespan. Thus, the 
differences seen in this case are unlikely to be the result of sampling. The final age-estimation 
method developed by the NIJ-research team for dissemination to the osteological community 
will have the option of using a combined or sex-specific reference sample. A combined sample 
would contain the variation seen in both males and females and therefore likely produce 
slightly broader (i.e., less precise) age estimates. The decrease in precision, however, may be 
justified by an increase in the applicability of the method for fragmented remains or isolated 
skeletal elements where the estimation of sex is not possible with a high degree of confidence. 
The issue of sex-specific models is further investigated in Chapter 5.   
 
 

 
 
Figure 3.7. Transition plots for the presence of exostoses on the anterior inferior iliac spine (AIIS).  
 
 
The final trait example is one with a different, but relatively common, pattern. The presence of 
candlewax on the vertebrae—shiny, sclerotic bone with the appearance of melted wax, often 
called diffuse idiopathic skeletal hyperostosis (DISH) when present on four or more 
consecutive vertebrae—is an example of a feature that occurs relatively infrequently, but that 
may contain some age information (Figure 3.8).  
 
In cases with low overall sample size, such as cervical candlewax, it is especially important to 
look at the overall age distribution of the trait scores in each sample before interpreting the 
fitted models. In the combined sample, it appears as though the presence of candlewax on at 
least one cervical vertebra provides some information after around age 60. However, unlike the 
humerus lesser tubercle margin where both categories provide age information, the absence of 
the trait provides little data about age; individuals without the feature range from 15 to 101 
years of age—the absolute limits of the age distribution. Looking at males and females 
separately, there is a slight difference in the age distributions. Candlewax appears at an earlier 
age in males. Interestingly, individuals with the feature also “disappear” from the sample at an 
earlier age. Because of the relatively small sample sizes involved at the upper ends of the 
lifespan, it is possible that this difference can be explained by random chance in sampling. 
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However, the possible influence of selective mortality is also being explored by the research 
team with a larger and more diverse sample as part of the larger NIJ-funded project. In the 
case of cervical candlewax, it is possible that males who develop the feature may have an 
increased risk of death relative to their age-matched counterparts who do not. Although 
speculative at this point, given this trait’s associations with adult-onset diabetes, obesity, 
hypertension, vascular and purine metabolism disorders, and potential to cause severe spinal 
cord injury from relatively minor trauma (Hannallah, White, Goldberg, & Albert, 2007; Kiss, 
Szilagyi, Paksy, & Poor, 2002; Poelstra, 2013), an increased risk of death, particularly for 
males, would not be surprising. There is also difference between the two death cohorts. In this 
case, however, the two individuals with candlewax in death cohort 1 fit comfortably within the 
age distribution for the feature in the combined sample. Therefore, it is likely that the 
differences are likely the result of sample size and not secular change (i.e., change over time). 
While it is possible that cervical candlewax has the same age distribution in both death cohorts, 
a much larger sample would be needed to investigation this possibility.  
 
 

 
 
Figure 3.8. Transition plots for the presence of candlewax on at least one cervical vertebra.  
 
 
Final Phase 1 Traits 
	
  
Figure 3.9 shows the distribution of all features investigated in Phase 1 and the 45 chosen for 
further investigation. In Phase 2 of this project, this list of features is combined with additional 
traits identified by members of the research team and tested in three modern samples from 
South Africa, Thailand, and Portugal to assess their utility in other populations. Features that 
show similar patterns among the temporally and geographically diverse samples in Phases 1 
and 2 are incorporated into the new age-estimation procedure that will be tested in Phase 3. 
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Figure 3.9. (a) Distribution of the approximately 100 features investigated in Phase 1 and (b) the location of the final 
45 features identified as potentially informative for adult age estimates.  
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CHAPTER 4: PHASE 2—COLLABORATIVE TRAIT INVESTIGATION & REVISED 
TRANSITION ANALYSIS METHOD DEVELOPMENT 
 
 
Accurate and precise estimates of age-at-death are often critical when individuals are 
represented only by skeletal remains. Unfortunately, practically useful age estimates for 
adults—those where an individual can be assigned confidently to a relatively narrow interval 
with a high degree of confidence—are beyond what standard methods can provide (Milner & 
Boldsen, 2012b). Existing methods most often yield biased point estimates of age that are 
accompanied by ranges that span several decades to virtually all of adulthood. The age 
intervals assigned to skeletons often cannot narrow a search to certain categories of missing 
people or provide support for individual identifications and increasingly fail to meet rigorous 
court-imposed standards (Garvin & Passalacqua, 2012; National Research Council, 2009). 
Although many have tried to address these issues11, accurate age estimates for adult skeletons 
remain elusive. Furthermore, little can be said with confidence about the age of people who live 
beyond about 50 years, a group who currently represents just over a third of the US population 
(Howden & Meyer, 2011).  
 
Beginning in 1996, Drs. George Milner and Jesper Boldsen began collaborative work on the 
skeletal and statistical components of the adult skeletal age-estimation problem. The primary 
objective of their work was to address the systematic bias in age estimates from adult skeletal 
remains. Although small portions of this research were funded in conjunction with other 
projects, anthropological funding agencies typically do not support method development. The 
single research proposal focusing solely on existing Transition Analysis (TA) and experienced-
based age assessments, submitted by Milner, was unsuccessful. The primary objection 
provided when the grant was rejected was that existing age-estimation methods work 
reasonably well in the younger half the adult lifespan, and few, if any, people over about 50 
years of age exist in archaeological samples. Therefore, improved age estimates would not 
make much of a difference in our interpretations of the past. So, for nearly two decades, this 
work remained unfunded and collaborators and students worked on aspects of the project 
essentially asynchronously as time and money permitted.  
 
In December 2014, after several submissions and the addition of two pilot studies12, a National 
Science Foundation Biological Anthropology Doctoral Dissertation Research Improvement 
Grant was awarded to Getz (DDRIG # 1455810; G. Milner, Advisor). At that time, the NSF grant 
was thought to be the primary means by which the research team could operationalize new 
aspects of their work. Getz would work closely with Milner to identify and refine skeletal features 
and evaluate a large sample of known-age skeletons from North America. The research team 
would collectively continue work on method development using Getz’s reference data, and the 
newly developed technique would then be tested on additional known-age European samples 
and applied to archaeological samples by Getz as a proof of concept for the procedure’s 
application to paleodemographic analyses. Boldsen and Ousley (Mercyhurst University), 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 For numerous examples of published methods, validation studies, and population-specific applications based on 
the cranial sutures, pubic symphysis, sacroiliac joint and ribs, see Appendix A. 
12 The first, by Getz, provided a back-to-back comparison of commonly used age-estimation methods, existing TA, 
and experience-based estimates using modern known-age skeletons from the Maxwell Museum Donated Collection 
(N=55). Experience-based estimates were used as a proxy for what is expected by incorporating a large suite of 
skeletal features into the existing TA framework. The second pilot study, presented maximum likelihood estimates of 
age-at-death generated by Boldsen using preliminary transition analysis for 15 traits using data collected by Milner 
at the Bass Collection (N=256). 	
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primarily responsible for the statistical and software development aspects of the larger project 
respectively, offered their expertise and continued support at no cost to the NSF grant.  
 
In April 2014, research team founders Milner and Boldsen, along with Oulsey, replied to an NIJ 
solicitation specifically for funding basic research to develop accurate, reliable, cost-effective, 
and rapid methods for the analysis and interpretation of physical evidence for criminal justice 
purposes (National Institute of Justice, 2014). Shortly after receiving word that the NSF grant 
had been awarded, the research team was also notified that the NIJ grant to support the much-
larger project had also been funded. While the previous anthropological grant had been 
unsuccessful on the grounds that too few ancient people lived beyond 50 years of age to justify 
any investment, more accurate and reliable methods were recognized as precisely what are 
needed for forensic purposes. Milner (PI), Boldsen (Co-PI), and Ousley (Co-PI) were awarded 
just over a half-million dollars to develop and test a new method of adult skeletal age estimation, 
as well as to develop associated computer software and disseminate the method through 
meeting presentations, workshops, and Fordisc (Ousley & Jantz, 2015), the state-of-the-art 
software used in medicolegal investigations of skeletal remains. 
 
Since its conception, the international research team has solidified and expanded to include 
additional individuals as its scope developed interdisciplinary demographic, archaeological, 
and forensic foci. With the funding of the NIJ project, the team now includes researchers from 
three institutions: The Pennsylvania State University (George Milner & Sara Getz); The 
University of Southern Denmark (Jesper Boldsen, Svenja Weise & Peter Tarp); and Mercyhurst 
University (Stephen Ousley). Additionally, Jutta Gampe, a mathematician from the The Max 
Planck Institute for Demographic Research (Rostock, Germany), is not a member of the NIJ-
funded research team, but she contributes to projects that are part of the team’s broader 
research agenda. In addition to funds for supplies and travel, the NIJ grant provided support for 
several members of the research team working on the project. Svenja Weise, previously a 
Boldsen doctoral student, received a one-year postdoc, while I received two years of support as 
a research assistant and will continue as a postdoc for one year after completion of this 
dissertation. As a research assistant. I work collaboratively with Milner to plan data collection 
trips, select skeletal samples, and create data collection forms and scoring procedures. In 
addition to collecting skeletal data as a team member, my responsibilities in the field include 
managing collection paperwork, specimen photography, and documenting changes and 
discussions related to the trait manual. After returning from the field, my primary responsibilities 
are to convert the data into electronic format, conduct preliminary analyses, and update the 
trait manual definitions and images. In conjunction with Milner, I also contribute substantially to 
the co-authored abstracts, posters, and presentations based on this work. As a post-doc I will 
continue this collaborative work preparing publications, readying the trait manual and software 
for dissemination, and conducting at least one training workshop at a national meeting.  
 
This dissertation is only possible because it builds on the two decades of focused adult age-
estimation research already conducted by members of the research team, much of which 
remains unpublished. This chapter provides an overview of the NIJ project, focusing on the 
aspects of the work that most closely relate to this dissertation, and summarizes work that has 
been presented at several national conferences by the research team. Because data 
collection, analysis, and presentation of results are collaborative endeavors among members 
of the research team, credit is provided where appropriate throughout this chapter.  
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NIJ Project Objectives 
 
The NIJ project has five primary goals: 1) identify and define new age-informative skeletal 
features; 2) assess inter- and intra-observer error; 3) establish trait age distributions in 
populations of diverse ancestry; 4) investigate theoretical and statistical improvements to the 
existing TA framework; and 5) develop materials for the dissemination of the new TA method 
to the osteological community, including an illustrated scoring manual and a user-friendly 
computer program. Compared to prior age-estimation research, this project is unique in both 
its size and scope.  
 
Although the NIJ project is scheduled to continue until December 2017, all reference data 
have been collected at this time. Nearly 1,700 skeletons (N=1,698) from four continents have 
been evaluated by our international team of six osteologists with differing levels of familiarity 
with age-estimation techniques. Because of the many years of foundational research and 
collective decades of experience on the research team, this project is able to address three 
critical areas of methods development – the bones, the math, and the computer software. The 
project will define and evaluate age-informative traits, refine a mathematically sophisticated 
procedure to effectively analyze this information, and produce a user-friendly computer 
program to allow others to easily use the technique. Together, these aim address both the 
basic and applied research goals of the NIJ grant solicitation for research and development in 
the forensic sciences. The final result of the project will be a 1) a new method for adult skeletal 
age estimation based on visual observation of features, and 2) an easy-to-use computer 
program that can be immediately put into use by forensic practitioners.  
 
The NIJ Project and Dissertation Phase 2 
 
This dissertation and the larger research-team project have complementary objectives. Both 
projects are focused on the identification, refinement, and documentation of age-related traits 
throughout the skeleton and evaluation of the accuracy and precision of estimates based on 
them. While the NIJ project focuses on modern (twentieth century) individuals of differing 
ancestry from four continents, this dissertation evaluates the range of variation found in one 
broadly-defined ancestry group over time (seventeenth through twentieth centuries).  
 
The NIJ project contributes to this dissertation as part of Phase 2. Simplied versions of the 
statistical procedures under development as part of the NIJ project are used to analyze the data 
collected in Phase 1. These data are then used as a reference sample to test the new TA 
procedure in Phase 3. At the completion of the NIJ project, data collected by the team, as well 
as some of the data from Phases 1 and 3 of this dissertation, will be incorportated into a new 
version of the TA program (Boldsen et al. 2002). This program combines age information from a 
large number of features with information about population structure to produce age estimates 
for the entirety of adulthood.  
 
Establishing a baseline for method improvement  
 
The ultimate goal of the NIJ project is to produce accurate, precise, and reliable age 
estimates for entire adult lifespan. To assess progress towards this goal, a baseline 
performance level for existing procedures was established during the first round of data 
collection at the Bass Collection. To avoid the issue of observer error, data were collected by 
one member of the research team (Milner) for 234 individuals using standard methods for the 
pubic symphysis and auricular surface, as well as using existing TA. Figure 4.0 shows the 
results of these techniques. The documented age of each individual in the sample is plotted 
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against the estimated point age, which is a mean, midpoint, maximum likelihood estimate, or 
the beginning of a terminal open-ended category, depending on the method. Males are 
shown in blue and females in red.13 The identity line (i.e., the line along which known and 
estimated age would have perfect correspondence) is shown in each plot.  
 
For all methods except for TA, the estimated age of individuals fall along horizontal lines 
because age can only be predicted using a relatively small number of fixed categories. TA 
(Figure 4.0, lower right) is the only method that provides individualized point estimates based 
on the suite of features present (Boldsen et al., 2002). Not only do the point estimates extend 
to the extremes of the adult lifespan (15–105 years), but the lengths of the age intervals differ 
based on the skeletal features available for analysis and the agreement among the age 
information provided by those features. 
 
It is desirable for both forensic and archaeological applications to have a method where 
individuals can be assigned to relatively narrow age ranges with a high degree of confidence. 
Existing techniques, however, typically sacrifice either accuracy or precision at the expense 
of the other (Buckberry, 2015). The precision (age interval length) and accuracy (known age 
within the estimated range) of the methods tested at the Bass Collection are summarized in 
Figure 4.1. All standard techniques either produce extremely narrow ranges that most often 
do not include the true age of the individual (high precision with low accuracy) or extremely 
wide ranges that encompass all of adulthood and are often correct (low precision with high 
accuracy). Neither extreme is useful in forensic or archaeological contexts.  
 
Although TA produces the best compromise between accuracy and precision of the existing 
methods (Figure 4.1), the results are still insufficient for forensic and archaeological 
applications. The systematic bias resulting from the failure of standard features to keep pace 
with chronological age after middle age cannot, in insolation, be overcome by any advanced 
statistical technique (Milner & Boldsen, 2012b, 2012c). To move forward, statistical 
improvements must be paired with a broader array of age-informative traits, especially those 
providing information in middle to old age. The NIJ project aims to generate age estimates 
with the highest precision and accuracy possible. Milner’s experience-based estimates are 
also shown as a proxy for what the NIJ research team hopes to accomplish when many 
skeletal traits are incorporated into the new TA procedure (Figure 4.1). 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 The Katz and Suchey (1986) revision of Todd shows only males because revised female ranges were not provided.	
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Figure 4.0. Age estimates using standard procedures for the sacroiliac joint and pubic symphysis and existing TA 
based on both the pelvis and cranium. Dots indicate published central tendencies and plus signs indicate the lower 
bounds of terminal open-ended intervals (males in blue and females in red). Figure created by Getz with Milner data 
(Bass Collection, N=234); data previously presented in (Milner, Boldsen, Ousley, Weise, et al., 2016). 
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Figure 4.1. Existing methods produce estimates along the line from low accuracy with high precision (lower left) to 
high accuracy with low precision (upper right). Figure created by Getz with Milner data (Bass Collection, N=234); 
presented in (Milner, Boldsen, Ousley, Weise, et al., 2016). 
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NIJ Data Collection  
 
Skeletal samples 
 
The NIJ project relies primarily on data from four modern known-age skeletal collections: the 
William M. Bass Donated Collection (Forensic Anthropology Center, 2012), the Pretoria 
University Collection (L’Abbé, Loots, & Meiring, 2005), the Chiang Mai University Collection 
(Mahakkanukrauh, Khanpetch, Prasitwattanseree, & Case, 2013), and the Bocage Museum 
Collection (H. F. Cardoso, 2006). Several identified forensic cases and donated individuals 
from Mercyhurst University were also evaluated. Table 4.0 lists the location and origin of each 
skeletal collection and the primary ancestry of the individuals evaluated.  
 
 
Table 4.0. Skeletal collections evaluated by the NIJ project in Phase 2 

Skeletal Collection Location Collection Origin Primary Ancestry1 

WM Bass Donated Knoxville, TN (USA) donated/forensic American white and black 

University of Pretoria Pretoria, South Africa donated South African white and black 

Chiang Mai University Chiang Mai, Thailand donated/forensic Thai 

Bocage Museum  Lisbon, Portugal cemetery European white  

Mercyhurst University Erie, PA (USA) donated/forensic American white  
1 Individuals from other ancestry groups were evaluated at the collections when available, but sample sizes are 
insufficient for separate analyses. 

 
 
Identifying and refining skeletal traits  
 
Prior to the first round of NIJ-funded data collection in May 2015, the 45 features identified in 
preliminary work by Getz in Phase 1 (see Table 3.3) were combined with 30 additional traits 
suggested by members of the research team. Nine features of the pubic symphsis and 
auricular surface used in existing TA were also added with a reduced number of categories. 
All of the features are easily visible with the naked eye and no specialized equipment or 
destructive sampling is necessary for data collection.  
 
All features were assessed by six members of the research team in modern skeletal samples 
representing populations from North American, Europe, Africa, and Asia (Table 4.0). After 
each round of data collection and analysis, existing trait definitions were refined by 
experienced osteologists, both native and non-native English-speakers, with different  levels of 
familiarity with the features. Definitions were revised, diagrams were added, and trait variants 
and scoring exceptions were extensively documented through notes and photographs.  
 
This process is a slightly elaborated version of the process used in Phase 1 of this dissertation 
(see Figure 3.3). After each round of data collection, the data were entered into electronic form 
and preliminary analyses were conducted by Getz using R code collaboratively developed by 
the research team. These results were initially discussed by Milner and Getz and the results, 
suggestions for trait elimiantions and modifications, and points of discussion were 
disseminated to the research team. Additional input was gathered from team members in the 
field regarding trait modifications and was incorporated into the scoring procedures by Getz in 
revisions of the trait manual after each round of data collection. 
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More advanced analyses of the NIJ data set, primary conducted by Boldsen, are currently 
underway. Features that show consistent age-related patterns between the sexes and among 
populations will be incorporated into the new age-estimation procedure. Table 4.1 shows the 
samples where reference data were collected, the number of traits and transitions identified, 
and the features eliminated after each round of analysis. During data collection in Pretoria 
and Chiang Mai, several features were added and a number were modified. Therefore, to 
have as complete a data set as possible, Milner and Getz returned to the Bass Collection in 
February 2016 to obtain these data. 
 

 
 
In addition to identifying new features throughout the skeleton, modifications have been made 
to the existing TA features in the cranium and pelvis. Categories with transition curves that 
span many decades and contribute little to overall age estimates have been eliminated, which 
resulted in a more streamlined scoring process. The number of trait variants for each feature 
was further reduced based on discussions among the members of the research team. The 
remaining stages were redefined to make them easier to score and less susceptible to intra- 
and inter-observer error. Carefully worded descriptions were elaborated with diagrams and 
high-quality images with informative captions primarily developed by Milner and Getz. 
 
Establishing trait age distributions  
 
As briefly discussed in Chapter 3, the existing version of TA uses a generalized linear model 
(the logit) to estimate the probabilities of traits occurring at each age across the adult lifespan 
(Boldsen et al., 2002). Generalized linear models are similar to the more commonly used linear 
regression models that many individuals are familiar with from introductory statistics. Simple 
linear regression models involve a single continuous predictor variable (x), a univariate 
response variable (y), some unknown parameter to be estimated from the data (b), and a 
constant (a) (Equation 4.0). This model assumes a linear relationship between the predictor and 
the response variables and interpretations of the model assume that the response variable has 
a normal distribution (S. N. Wood, 2006e). Generalized linear models allow the expected value 
of the response variable to depend on a smooth, monotonic function of the predictor variable 
and the distribution of the response variable can follow any distribution from the exponential 
family (S. N. Wood, 2006c). In the case of TA, it is the natural log of the odds of a trait being 
present (logit of p) that is linearly related to the product of the predictor variable (age, x) and 
estimated coefficient (𝛽!), plus the constant (𝛽!) (Equation 4.1). The response variable (p) is 
assumed to have a binominal distribution. Maximum likelihood estimation is used to find the 
best fitting values for the constant and coefficient.  

Table 4.1. Summary of Phase 2 trait refinement and data collection process 
    Skeletal Sample  Traits 
Collection Date  N M F  New  Used Eliminated Transitions 
Bass  05/2015  423 221 202  --- 89 15 129 
Pretoria  07/2015  424 269 155  3 77 1 107 
Chiang Mai 01/2016  440 271 169  3 79 0 118 
Bass(2) 02/2016  14 12 2  0 79 0 118 
Mercyhurst 04/2016  7 5 2  0 79 0 118 
Lisbon  06/2016  390 190 200  0 79 --- 118 

Final ---  1698 968 730  --- --- --- --- 
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Once the constant and coefficient in the model have been estimated, the inverse logit (or the 
inverse of Equation 4.1) must be used find the probability of a trait being present for an 
individual of each age. For this, the logit link (Equation 4.2) is used. Applying Equation 4.2 to the 
linear predictor (the right side of Equation 4.1), the probability of a trait being present in the jth 

skeleton 𝑦! = 1 with age-at-death (xj) is shown in Equation 4.3 (Boldsen et al., 2002). To obtain 
an age estimate in the existing Transition Analysis program, the probabilities are combined to 
produce a maximum likelihood age-at-death estimate in a manner discussed later in this 
chapter. The basic steps between Equations 4.1 and 4.3 are shown in Appendix C. 
 
 
𝑦 = 𝑎 + 𝑏𝑥   +   𝜀          (4.0) 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛 𝑝
1−𝑝 = 𝛽! +   𝛽!𝑥   +   𝜀              (4.1) 

𝑙𝑜𝑔𝑖𝑡  𝑙𝑖𝑛𝑘   =   Λ = !(∙)
!!!  (∙)

          (4.2) 

Pr y! = 1     x!) = Λ   𝛽0 +   𝛽1x!      =   
!(𝛽0+  𝛽1!!)

!!!(𝛽0+  𝛽1!!)
        (4.3) 

 
 
One alternative under investigation for future versions of TA is the substitution of smoothed 
empirically based curves in place of those currently produced by logistic regression. These 
alternative curves are produced with generalized additive models (GAMs) fitted using the R 
package mgcv (R Core Team, 2012; Wood, 2004; Wood, 2006). Generalized additive models 
are a type of generalized linear model where the linear predictor involves a sum of smooth 
functions of covariates (S. N. Wood, 2006d). In essence, rather than assuming that the entire 
reference data set can be described by a distribution with a single parameter value, 
generalized additive models allow for more flexibility by fitting multiple parameter values to 
different parts of the data set.14  

In the GAMs used here, the complexity of the curves – how much ‘wiggliness’15 is allowed – is 
controlled by a smoothing parameter value (𝜆). This parameter value can be automatically 
chosen by the gam() function through repeated iterations of model fitting and generalized cross 
validation (GCV)16 or specified by hand (S. N. Wood, 2006a, 2006d). A smoothing parameter 
value of 0 results in an unpenalized model with as much ‘wiggliness’ as is justified by the data, 
while a large smoothing term will produce a completely smooth curve that essentially duplicates 
the logistic function. If the smoothing parameter is too low, the function will be under-smoothed 
and fit the underlying signal as well as the noise in the data. The model will perform poorly when 
applied to other data sets. In contrast, if the parameter is too high, the curve will be over-
smoothed and potentially obscure important features of the data. The optimal smoothing 
parameter is a compromise between smoothness and the fit of the model (S. N. Wood, 2006d).  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14 Whether GAM models fitted using regression splines should be considered parametric or non-parametric is 
debatable because “once the number of knots is chosen, a parametric family has been specified with a finite number 
of parameters” (Faraway, 2006b, p. 219).  
15 Term used by (S. N. Wood, 2006b). 
16	
  GCV can be turned on by adding (k=-1) to the model formula. Wood (2006a, 2006d) provides a more detailed 
discussion of generalized cross validation and the specifications of generalized additive models. 	
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The research team is currently investigating three possible models for incorporation into the new 
Transition Analysis framework, the logit, a GAM with an automatically chosen smoothing 
parameter, and a GAM with a smoothing parameter hand-selected from a range of ten values 
ranging from 0.000001 (essentially unpenalized) to 1000 (essentially logistic). Figure 4.2 
compares the curves generated for three features using the smallest (𝜆 =10-6) and largest (𝜆 
=103) of the smoothing parameters. It is likely that the optimal smoothing parameter for many 
features, the best compromise between model complexity and practical value, lies somewhere 
between the extremes.  
 
 

 
 
Figure 4.2. Comparison of the GAMs generated with the smallest (10-6, black line) and largest (103, grey line) 
smoothing parameters for a) lateral clavicle macroporosity, b) sternal dorsal ridges, and c) thoracic vertebrae 
candlewax. Data from Getz Phase 1 primary reference sample. 
 
 
Preliminary investigations by members of the research team (Milner pilot data) indicate that 
GAMs may show steeper ages of transition than those produced by logistic regression for some 
traits. Because steeper transitions provide tighter age intervals for individual features, it is 
possible that using trait probabilities from GAMs may improve the precision of overall estimates 
generated from many traits. Additionally, in some cases, the added complexity in the 
generalized additive model may represent real and, ultimately, important underlying features of 
the data. However, there is also the risk in small samples that the features of a more complex 
model may just as easily represent noise. As an added complication, although GAMs may more 
accurately reflect reality, common tasks, such as hypothesis testing and the estimation of 
intervals, are computationally more intensive (S. N. Wood, 2006b). Therefore, the potential 
improvement to age estimates provided by generalized additive models must be balanced 
against the time, complexity, and uncertainty introduced into the process.  
 
Figure 4.3 compares the logistic and GAM models with an automatically selected smoothing 
parameter generated for three traits. The divergence between the models is relatively small, but 
shows the greatest difference at the ends of the age distribution. These small differences may, 
cumulatively, affect the final age estimate produced, but the impact of model choice will likely 
vary depending on the age of the individual being assessed and the particular mix of 
characteristics present. 
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Figure 4.3. Comparison of the logistic (grey line) and generalized additive model (black line) for the a) profile of ribs 
three through ten, b) humerus lateral epicondyle, and c) lumbar vertebral lipping, with the greatest divergence 
occurring at the ends of the age distribution. Data from Getz Phase 1 primary reference sample. 
 
 
The difference between the models generated based on the hand-selected smoothing 
parameter and the logistic curves vary greatly by feature. In some cases, such as those shown 
in Figure 4.4, the choice of smoothing parameter has essentially no effect. The logistic curves 
and all ten generalized additive models [𝜆 = 10-6 10-5, 10-4, 10-3, 10-2, 10-1, 100, 101, 102, 103] 
are, for practical purposes, the same.   
 
 

 
 
Figure 4.4. Two features for which the choice of smoothing parameter has essentially no effect. Logistical curve 
(solid grey line) and ten different generalized additive models with different smoothing parameters (colored dotted 
lines) for medial clavicle (left) and bone growth on the lateral margin of the lesser tubercle of the humerus (right). 
Data from Getz Phase 1 primary reference sample. 
 
 
In some cases, such as those in Figure 4.5, the choice of smoothing parameter has a slight, 
but noticeable, effect on the shape of the fitted model, particularly at the ends of the age 
distribution. For curves in this category, the bumps in middle age likely reflect slight fluctuations 
in the sample age distribution, but are unlikely to relate to underlying biological processes. 
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Figure 4.5. Two features where the choice of smoothing parameter produces slight differences. Bumps in middle age 
likely reflect slight fluctuations in the sample age distribution, but are unlikely to be related to underlying biological 
processes. Logistic curve (grey solid line) and ten GAMs (colored dotted lines) are shown for textural changes on the 
medial epicondyle of the humerus (left) and lipping of the lumbar vertebrae (right). Data from Getz Phase 1 primary 
reference sample. 
 
 
For a small number of features, such as those in Figure 4.6, the choice of smoothing 
parameter makes a significant difference in the age-informative value of the feature. The 
models for these traits fall into one of two groups: 1) significant variability throughout life with a 
rapid increase in old age, or 2) a steady increase throughout adulthood with, ultimately, only a 
small fraction of the population at each age having the feature. Although the features of the 
more complicated models may prove to provide interesting glimpses of underlying biological 
processes, for the purposes of age estimation, the more conservative, smoother curve is likely 
to be of more use for age estimation.  
 
 

 
 
Figure 4.6. Examples of traits where the smoothing parameter has a significant effect on the shape of the fitted 
curves, especially at the oldest ages. Models shown for hyperostosis frontalis interna (HFI) (left) and extremely thin 
ribs (right). Data from Getz Phase 1 primary reference sample. 
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Selective mortality  
 
Another issue currently under investigation by the research team is the possible influence of 
selective mortality on trait distributions. It is possible that for some traits, individuals who 
develop the feature may have an increased risk of death relative to their age-matched 
counterparts who do not. Although selective mortality cannot be detected with smoothed 
logistic functions, it may be possible to detect this signal using generalized additive models. 
For some features, such as those shown in Figure 4.7, the logistic curve (grey line) shows a 
general increase from young to old age, while the GAM with an automatically selected 
smoothing parameter (black line) shows variability in the latter half of the lifespan. The bumps 
around 60 years of age may possibly indicate selective mortality and are smoothed over by the 
logistic model. It is possible that in these cases the early development of the feature is 
correlated with some underlying disease or process that increases the risk of death. Once 
these individuals are removed, the trait frequency in the remainder of the population increases 
with age. It is possible that this phenomenon is partially responsible for the large amount of 
variation present in age estimates for middle-aged individuals, and the correspondingly large 
age ranges produced.  
 
 

 
 
Figure 4.7. Logistic (grey line) and generalized additive models with an automatically chosen smoothing parameter 
(black line) for candlewax (DISH) in the thoracic vertebrae (left) and irregular ossifications on the profile of ribs three 
through ten (right). Data from Getz Phase 1 primary reference sample. 
 
 
Similarly, some features show a pattern where the trait appears in the sample, increases in 
frequency with age, and the drops out relatively early in the age distribution (Figure 4.8). 
Although the association with selective mortality is speculative at this point, two of the features 
in Figures 4.7 and 4.8, thoracic candlewax and superior-anterior sacroiliac joint fusion, are 
associated with a condition known as diffuse idiopathic skeletal hyperostosis (DISH). This 
condition has been associated with adult-onset diabetes, obesity, hypertension, vascular and 
purine metabolism disorders, and the potential to cause severe spinal cord injury from 
relatively minor trauma (Hannallah et al., 2007; Kiss et al., 2002; Poelstra, 2013), so an 
increased risk of death, particularly for males, would not be surprising. 
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Figure 4.8. Logistic (grey line) and generalized additive models with an automatically chosen smoothing parameter 
(black line) for superior-anterior sacro-iliac joint fusion (left) and development of the pubic symphyseal collar (right). 
The bumps around 60 years of age may possibly indicate selective mortality and are smoothed over by the logistic 
model. Data from Getz Phase 1 primary reference sample. 
 
 
Because of the relatively small number of individuals available from skeletal samples at the 
upper ends of the lifespan, it is possible that variation in the models can be explained by 
random chance in sampling. However, if similar model features also appear in the large and 
diverse sample collected by the research team, the possibly of selective mortality becomes 
more likely. Identifying these trends in skeletal samples is the first step towards more detailed 
investigations with larger samples of documented individuals and collaboration with medical 
researchers, which will be briefly discussed in Chapter 7. For the purposes of the NIJ project, 
identifying features that are heavily influenced by selective morality and removing them 
consideration may result in a reduction in age-estimate error in middle age. 
 
Age-At-Death Estimates Using Multiple Features  
 
Maximum likelihood estimates 
 
The models discussed above generate individual likelihood functions for the probability of a trait 
existing at each age of the adult lifespan. The probability for multiple traits is equal to the 
product of their individual likelihood functions (Equation 4.4). To mathematically simplify this 
computation, the natural log of the likelihood function (i.e, log-likelihood) is used (Equation 4.5). 
The steps between Equations 4.4. and 4.5 are shown in Appendix C. 
 
 
𝐿 =      [𝑃𝑟 𝑦 = 1   𝑥)]!!   [1 −   𝑃𝑟 𝑦 = 1   𝑥)]!!  !!!

!!!       (4.4) 
 
 
𝐿𝑛  𝐿 =    {𝑦! 𝑙𝑛[𝑃𝑟 𝑦 = 1   𝑥)!

!!! ] +     (1 − 𝑦!)𝑙𝑛  [1 −   Pr   𝑦 = 1   𝑥)]}     (4.5) 
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Using Equation 4.5, the individual log-likelihood values for each trait are summed to produce a 
likelihood function for the entire skeleton. The peak of this distribution is the maximum 
likelihood value of age. Although the math of the generalized additive models is not the same, 
a similar process of summing the log-likelihood values for each feature is used. 
 
Preliminary age estimates for Bass Collection skeletons 
 
Figure 4.9 shows the age estimates produced using the existing TA procedure based only on 
cranial and pelvic traits (a), compared to those produced using new features throughout the 
skeleton collected by the NIJ team (b). Both analyses used sex-specific transition curves and a 
uniform prior distribution. The existing TA procedure includes an ad hoc correction for 
correlated features that is not included in the preliminary Transition Analysis with new traits 
shown here (Boldsen et al., 2002). However, the correction for trait correlations only influences 
the width of the age interval and not the maximum likelihood age estimate. Therefore, Figure 
4.9 essentially compares the results of the same statistical procedure using different features. 
Although the error in age estimates still increases in middle age, the addition of new traits has 
greatly reduced the age-estimation error throughout the lifespan and almost eliminated the 
age-estimate bias seen in existing techniques. The effects of correlated features on the 
precision of age estimates will be discussed in greater detail in Chapter 5. 
 
 

 
 
Figure 4.9. (a) Maximum likelihood age estimates produced using existing TA based only on cranial and pelvis traits, 
and (b) the new procedure using features throughout the skeleton for the same sample (males in blue and females in 
red). Identify line shown for comparison. Age estimates generated by Boldsen using Milner data (Bass Collection, 
N=234) and figure created by Getz; data presented in (Milner, Boldsen, Ousley, Getz, et al., 2016). 
 
 
These preliminary TA estimates provide evidence that eliminating features with unexplained 
variation in middle age, potentially the result of selective mortality, may improve the maximum 
likelihood age estimates. Figure 4.10 compares new TA estimates generated for Bass 
skeletons using a small sample of traits including those showing possible selective mortality 
signatures, and estimates for the same set of skeletons with those features removed. In the 
first set of estimates (a), GAMs with hand-selected smoothing parameters were used to 

Clavicle Medial Epiphysis Fusion Clavicle Medial Epiphysis Fusiona) b)
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generate maximum likelihood ages at death. In the second set (b), traits that showed variation 
in the sex-specific GAM curves were eliminated. Although estimates are still wider in middle 
age than at the ends of the age distribution, eliminating features based on the shape of the 
GAM curves seems to improve the correlation between known and estimated age. The impacts 
of trait and model selection on the accuracy and precision of age estimates will be further 
explored using two additional samples in Chapter 5. 
 
 

 
 
Figure 4.10. Comparison of new TA maximum likelihood estimates (males in blue and females in red) for the same 
sample based on (a) all features showing age-related patterns and (b) the same feature set with traits showing 
variation in the sex-specific GAM curves eliminated. Identify line shown for comparison. Age estimates generated by 
Boldsen using Milner data (Bass Collection, N=234) and figure created by Getz.  
 
 
Effect of Model Choice on Maximum Likelihood Age Estimates  
 
Maximum likelihood age-at-death estimates were generated by Getz for individuals from the 
Athens Collection (N=201) using Phase 1 reference data for 40 features using the same 
procedure as shown above. These estimates indicate that the choice of model, logistic or either 
of the GAMs makes relatively little difference in the point estimates of age. The pattern is the 
same whether a single model is used to represent the entire sample of males and females 
collectively (Figure 4.11), or if sex-specific models are used to estimates the ages of males and 
females separately (Figure 4.12). The effect of model selection when using different groups of 
features, as well as on the length of associated age ranges will be investigated further in the 
validation study in Phase 3 and by the research team in their larger sample.  
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Figure 4.11. Comparison of maximum likelihood age estimates produced for the same individuals using a logistic 
model (GML), a generalized additive model with an automatically selected smoothing parameter (GAM1), and an 
alternative GAM with a hand-selected smoothing parameter (GAM2), all based on a combined sex reference sample. 
Identity line shown for reference. Getz data, Athens Collection, N=201. 
 
 

 
 
Figure 4.12. Comparison of the maximum likelihood age estimates produced for the same individuals using sex-
specific models. Identity line shown for reference. Getz data, Athens Collection, N=201. 
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Age intervals for maximum likelihood estimates 
 
In preliminary transition analysis trials by the research team, and those in this dissertation 
(Chapter 5), age intervals around the maximum likelihood estimate of age are estimated using 
the likelihood-ratio test. This test is based on the concept of forming a confidence interval 
around the single estimated parameter in our model (𝜃), such that all of the values of (𝜃) for 
which the log-likelihood 𝑙 𝜃!; 𝑥  are within a given tolerance of the maximum value 𝑙 𝜃; 𝑥 . If 𝜃! 
is the true value of the parameter, then likelihood-ratio test statistic (Equation 4.6) is 
approximately distributed as a chi-squared distribution with one degree of freedom (𝜒)!! when 
the sample is large (Boldsen et al., 2002; D. R. Cox & Hinkley, 1979). 	
  
 
 

2 log !(!;!)
!(!!;!)

= 2  [𝑙 𝜃; 𝑥 −   𝑙 𝜃!; 𝑥 ]         (4.6) 
 
 
The likelihood ratio tests the null hypothesis (𝐻!:  𝜃 = 𝜃!)  versus a two-sided alternative 
(𝐻!:  𝜃   ≠ 𝜃!). The null hypothesis is rejected at the 𝛼-level if the likelihood ratio test statistic is 
greater than the value of the chi-squared distribution at the 100(1- 𝛼)th percentile of the chi-
squared distribution (Faraway, 2006a). For a 95% confidence interval (𝛼=0.05) the value is 
3.841 (Equation 4.7). In other words, the 95% interval includes all values where the likelihood 
function decreases by no more than 1.9205 units17 (Equation 4.8).18 
 
 
2   𝑙 𝜃; 𝑥 −   𝑙 𝜃!; 𝑥 ≤ 3.841          (4.7) 
 
 
𝑙 𝜃; 𝑥 ≥ 𝑙 𝜃; 𝑥 − 1.9205          (4.8) 
 
 
This concept is visualized in Figure 4.13 for a 95% confidence interval. A line is drawn on the 
log-likelihood function at the value 1.9205 units below the maximum likelihood value for age 
(horizontal line). The end values of the age interval (vertical lines) are the points where the 
probability function intersects with the horizontal line. For a 99% confidence interval, the 
horizontal line would be moved down, and the confidence interval would widen accordingly. 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17 The value of the 99th percentile of a (𝜒)!! is 6.6.35, so a 99% interval would include all values where the log-
likelihood function drops off by no more than 3.317 units.  
18 Although hypothesis testing for GAM models is only approximate (S. N. Wood, 2006b), age estimates in the 
preliminary NIJ work and this dissertation are calculated in the same manner for all log-likelihood age functions, 
regardless of whether logistic or GAM curves were used.  
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Figure 4.13. A log-likelihood function based on 33 skeletal features showing a) a horizontal dashed line 1.9208 units 
below the peak of the distribution and b) the 95% interval based on the intersection of the horizontal line with the 
probability curve (vertical dotted lines). Open circle represents the true age of a female from the Athens Collection. 
 
 
Correlated traits  
 
When combining features using a transition analysis approach, an assumption must be made 
that each trait provides independent information about age if the effect of age is removed. In 
other words, it is assumed that features are correlated with each other because they each 
independently develop with increasing age and that this effect can be mitigated statistically. 
Unfortunately, because underlying biological processes affect bone growth and resorption 
throughout the skeleton in similar ways and age-estimation methods often use multiple 
features from the same skeletal element or joint, this assumption is likely to be untrue.  
 
If correlated traits are used to estimate age and an adequate statistical correction is not 
applied, then the age intervals produced will be systematically too narrow. This effect can be 
seen in tests of existing methods when lower accuracy is obtained than would be expected 
based on the use of confidence intervals of a particular length (e.g., 95%). This is precisely 
what has been found in tests of existing TA (e.g, Figure 4.1) despite the method’s statistical 
correction for correlated features.   
 
This issue is of particular importance for new TA procedure because of the large number of 
new features identified throughout the skeleton. The level of correlation among traits resulting 
from common underlying biological processes, between bilaterally scored features, and among 
traits in the same developmental or functional unit are currently unknown and potentially 
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complex. Because many traits provide similar, but distinct, information about age (e.g., the 
anterior superior margin of S1 and adjoining margins of L5), the decision of which features to 
include in the method will be based partially on the effect that including correlated traits has on 
the age estimation. Ideally, the number of features in the new TA will be enough to generate 
reasonably precise estimates, but not so many that the correlations among them result in 
overly narrow age estimates that reduce accuracy.  
 
As part of the NIJ project, the research team is investigating statistical methods for mitigating 
the effects of correlated features as well as practical ways to identify and reduce the number 
of traits used. Correlations among trait pairs and groups of functionally and developmentally 
related features will be investigated using both NIJ and Getz dissertation data. The statistical 
methods are primarily the responsibility of other members of the research team, while several 
practical options have been evaluated in this dissertation. One of these solutions involves 
selecting the most age-informative feature from correlated pairs based on the slope of the 
transition curves and only the “best” one (i.e., the one with the steepest transition) is used to 
calculate an age-estimate. This procedure maximizes data from partial skeletons because 
age-related features are not removed prior to observation of the skeleton. In the new TA 
software, this practical solution may be implemented in such a way that traits are prioritized 
based on their age-informative value, and a less informative trait can only be entered if the 
preferred one is not available. Another solution involves iteratively searching for the set of 
features that minimizes age-estimate error, while maximizing accuracy. The results of these 
preliminary tests using the Athens collection are presented in Chapter 5. 
 
The New Transition Analysis Method Software  
 
Software development 
 
Upon completion of NIJ project, anticipated for the end of 2017, the new TA method will be 
available as both a stand-alone program and as a part of Fordisc, an internationally used 
program used to statistically estimate the ancestry, sex, and stature of adult skeletal remains 
based on large reference samples (Jantz & Ousley, 2013; Ousley & Jantz, 2015). Steve 
Ousley, one of the PIs of the NIJ project and the developers of Fordisc, has already integrated 
the existing TA method into the newest version of this software, which should be available in 
early 2017. Fordisc is already routinely purchased by practitioners and academic institutions as 
part of their standard software used for research and training purposes. With the added 
capability of adult age-at-death estimation, it is likely to become the single most heavily used 
resource for generating biological profiles for medicolegal purposes. However, because Fordisc 
must be purchased, to reach the broadest possible audience, the new TA method will remain 
available as a free, stand-alone program.  
 
To date, Ousley has already completed several updates to improve the functionality of existing 
TA in terms of compatibility with updated software platforms and the presentation and 
interpretation of results. Modifications to the way the program outputs results include the option 
to export results as a report and the addition of bar charts for estimated age ranges (Figure 
4.14). Although the bar charts (Fig.4.14, right) are easier to interpret and explain to non-
specialists, the likelihood curves (Fig. 4.14, left) provide an excellent visual representation of 
the variation present in the skeleton and better represent the contributions of each feature to 
the age estimate. Therefore, the program retains the capability to produce both types of output.  
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Figure 4.14. Probability curves and bar plot output from the existing TA program (ver. 2.1.041. The curves and bars 
show the age range produced by each of the areas of the skeleton individually (auricular surface—green, pubic 
symphysis—magenta, cranial sutures—red) and the combined age estimate using a uniform (black) or archaeological 
(blue) prior distribution.  
 
 
At the completion of the NIJ project, Ousley will retain primary responsibility for updating both 
the free and Fordisc versions of the program as computer hardware and software change to 
ensure that they will not become obsolete. This ongoing support ensures that our data, 
incorporated within both program versions, will be available to researchers long after support 
for the NIJ project ends. Additionally, data collected using the new TA method from known-age 
skeletons around the world can be incorporated into the Forensic Data Bank (FDB), which has 
been managed by Ousley for over a decade. The FDB holds the reference data for Fordisc and 
also maintains data from over 3,400 modern individuals and many nineteenth century samples 
(Ousley & Jantz, 2012).  
 
Sex and population-specific reference samples 
 
The existing TA program allows users to use sex- and ancestry-specific reference data. The 
options for ancestry currently include black and white, which are the two groups represented in 
the Terry Collection originally used as the reference sample for the method (Boldsen et al., 
2002). Selecting unknown for either sex or ancestry, results in the use of combined reference 
sample data. For example, if male with unknown ancestry is selected for analysis, probability 
models estimated from all black and white males in the reference sample will be used.   
 
Based on preliminary analyses conducted by Getz, it is uncertain whether significant 
improvements will be seen in age estimates produced using sex- and ancestry-specific models 
for the new features because the curves for many features are similar. Figure 4.15 shows the 
maximum likelihood age estimates produced by Getz for individuals from the Athens Collection 
(N=201) using three different models fitted to both combined and sex-specific reference 
samples. These data demonstrate that the use of different models for males and females 
produces only minor differences between the point age estimates. Although differences in point 
estimates may be slight, they could potentially be significant in forensic contexts and greater 
differences may be seen in the associated age-interval lengths. Additionally, the differences 
between combined and sex- and population-specific models could vary significantly depending 
of the traits ultimately selected for analysis. These issues will be further discussed in the 
validation study in Chapter 5.   
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Figure 4.15. Maximum likelihood age estimates for the same individuals using three models generated from 
combined (left) and sex-specific (bottom) reference samples. Identity line shown for reference. Getz data, Athens 
Collection, N=201. 
 
 
At present, the research team anticipates that the ability to select sex- and population-specific 
models will be retained in the new version of the TA program. Using the samples collected as 
part of the NIJ project, users will potentially have the option of white, black, Asian, and 
unknown. However, because of sample size constraints, it may be possible that the initial 
version of the new program may only have the option of white and unknown. The use of a 
combined reference sample will likely result in more conservative estimates (i.e., longer 
prediction intervals), but may be more appropriate for forensic use when ancestry is unknown 
or population-specific reference samples are unavailable.  
 
Prior distributions  
 
The simplified version of the TA procedure used to test the performance of the new features in 
this dissertation assumes a uniform prior distribution, which means that an individual of every 
age—15 to 105 years—is equally likely to die and end up in a mortality sample. Although a 
uniform prior distribution is a conservative approach because it does not impose a specific age-
at-death structure onto the data, it is also an unrealistic one (Boldsen et al., 2002; Konigsberg 
& Frankenberg, 1994). Even in the United States where individuals routinely live beyond 50 
years of age, the probability of finding a 90 year-old and 60 year-old in a mortality sample is not 
the same. Although the probability of death increases with age, there are also fewer individuals 
of each age in the population as a whole, so fewer of them will ultimately end up in mortality 
samples. Because a uniform prior does not account for the fact that all individuals with the 
oldest trait scores are unlikely to be at uppermost extreme of the age distribution, the ages of 
individuals who exhibit the oldest trait categories tend to be overestimated. Tests of existing TA 
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have shown that, in practice, a uniform prior does in fact overestimate age at older ages 
(Boldsen et al., 2002; Milner & Boldsen, 2012c).  
 
The existing Transition Analysis program includes two options other than a uniform prior 
distribution. These are a “forensic” distribution, which includes all homicides compiled by the 
Centers for Disease Control and Prevention (CDC), and an “archaeological” distribution, which 
is derived from seventeenth century rural Danish parish records (Boldsen et al., 2002). The 
research team anticipates that several prior distribution options for medicolegal investigations 
may be added, including overall mortality, homicides, and forensic cases in the United States. 
The overall impact of these distributions on age estimates in both forensic and archaeological 
settings will also investigated by the research team.  
 
Despite its shortcomings, in this dissertation a uniform prior distribution is used to assess the 
performance of the new features. Because this dissertation evaluates multiple samples that 
differ substantially in both known and unknown ways, a uniform prior distribution is the most 
likely way to obtain results that can be directly compared among the samples. This approach 
also simplifies comparisons between the existing TA method and the new procedure. 
Fortunately, it has been shown that the choice of prior distribution has little effect on maximum 
likelihood ages estimates until after age 50, and only a relatively small effect until after age 80. 
Figure 4.16 compares existing TA estimates generated using uniform and archaeological prior 
distributions for skeletons from the Athens Collection. The pattern is nearly identical to what 
was found by Milner and Boldsen (2012) in a published validation study of existing TA using a 
different skeletal sample.  
 
 

 
 
Figure 4.16. Comparison between maximum likelihood age estimates produced using the uniform and archaeological 
prior distributions in existing TA. The identify line is shown for reference. Getz Data: Athens Collection, N=201. 
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Trait scoring manual 
 
The NIJ project began data collection in May 2015 at the Bass Collection with a trait manual 
consisting of 28 pages of text. During each data collection trip over the next year, members of 
the research team made suggestions, corrections, and notes in personal copies of the manual, 
which they were encouraged to refer to frequently. All comments and edits were compiled by 
Getz and key points were discussed as a group before modifications to trait definitions were 
made. As new traits were identified, definitions were developed and refined through this 
process of suggestion and discussion. Team members also flagged specific skeletal elements 
or individuals during the data collection process for photographic documentation. Photos were 
taken to represent both the obvious and subtle versions forms of a trait. Borderline cases, 
situations where features should not be scored, and common points of confusion were also 
documented and these images are discussed with informative captions in the trait manual.   
 
Having non-native English speakers as part of the research team (Boldsen, Tarp, and Weise) 
helps to ensure that the terminology and descriptions used for the features are intelligible to 
researchers worldwide. Although Ousley is primarily responsible for the computer programming 
aspect of this project, he has also made important contributions to improving trait definitions 
because he was not initially involved in their development. Standardizing terminology and 
simplifying definitions is an ongoing process and will likely continue even after the first version 
of the new TA manual is released. The final version of the trait manual will also include a 
glossary, which clearly identifies and defines key terms used throughout the text. 
 
The scoring manual used for the final scheduled round of data collection in Lisbon, Portugal 
consisted of 86 pages with 26 diagrams and 440 images. Additional diagrams illustrating 
important concepts, such as scoring areas and trait locations, are currently under development 
and several dozen additional images from the last round of data collection are awaiting 
integration into a new draft of the manual. Versions of manual figures and images will also 
eventually be incorporated into the computer software for the method. Sections of the NIJ 
scoring manual describing the traits used to test the new TA procedure in Chapter 3 are 
included as Appendix D.  
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CHAPTER 5: PHASE 3—TESTING REVISED TRANSITION ANALYSIS ON TWO 
KNOWN-AGE SAMPLES 
 
 
An ideal age-at-death estimation method reliably produces accurate and precise age estimates 
with a quantifiable degree of certainty and is equally practical for individual skeletons and large 
samples (Milner & Boldsen, 2012b). A reliable method consistently produces the same results 
regardless of the observer or the number of times that it is applied. Precision is related to the 
length of the estimated age range for a particular individual; a technique with high precision 
provides a narrow age interval, while low precision results in broad ranges. In this dissertation, 
accuracy is used to describe whether the documented age of an individual falls into the 
estimated range.19 Ideally, age intervals generated by a method should be wide enough to 
capture the true age of an individual, while still being narrow enough to provide useful 
information (Buckberry, 2015). Unfortunately, many existing methods obtain reasonably high 
levels of accuracy by decreasing precision to the point where at least some intervals cover most 
of the adult lifespan (e.g., Brooks & Suchey, 1990; DiGangi et al., 2009; Meindl & Lovejoy, 
1985; Osborne, Simmons, & Nawrocki, 2004). To be practical, the method should be based on 
parts of the skeleton that are often recovered and typically well preserved in forensic and 
archaeological contexts. The process for analyzing features should be quick, non-destructive 
and require no specialized equipment or extensive training to apply reliably. To have confidence 
in the results of a method, the technique's applicability to different populations across time and 
space, and the likely consequences if the recommendations are violated, should be known.  
 
Although they may appear to be similar, the criteria for a useful age estimation method in 
archaeological settings are somewhat different that those for forensic purposes. Age estimation 
in forensic settings typically involves the analysis of a single individual or a very small number of 
them. Estimated sex, ancestry, and other contextual information can often be used to select a 
method that is likely to provide the most accurate and precise result for each case. For 
archaeological applications, however, researchers typically deal with larger samples of much 
less well-preserved remains. Critical elements, or important pieces of them, are often missing 
and taphonomic changes can hinder the interpretation of age-related changes. It is also often 
unclear what effects of applying methods developed using individuals from different populations 
are on archaeological samples. This issue of whether time period- and population-specific 
methods are required to adequately estimate adult age-at-death has become a contentious 
topic in recent years (Hoppa, 2000; Konigsberg et al., 2008; Molleson, 1995; Ubelaker, 2008).   
 
The majority of anthropologists seem to believe, quite reasonably, that the use of a method 
developed on a group more similar to the population of interest will provide better results (A. 
Schmitt et al., 2002). Unfortunately, the number of well-documented skeletal reference 
collections in the world is far fewer than the number of populations that forensic anthropologists 
are interested in. Additionally, these samples are typically small, and often biased, samples of 
the populations they supposedly represent (Komar & Grivas, 2008; Usher, 2002). This means 
that any population-specific standards developed are based on a relatively small number of 
individuals who may or may not be a good match to the population as a whole or to the 
individual being analyzed (Milner & Boldsen, 2012b). Assessments of differences between 
populations using traditional methods typically apply the technique to a local, known-age 
skeletal sample or to two different groups (e.g., Gocha et al., 2015; Moraitis, Zorba, Eliopoulos, 
& Fox, 2014; Rissech et al., 2012; Sakaue, 2006; A. Schmitt, 2004) and the average age of 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
19  Accuracy is sometimes also used in published studies to describe how closely the estimated point age 
approximates an individual’s documented age. 
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individuals assigned to each stage or, in rare cases, the age-at-transition between stages, are 
compared. Even relatively minor differences are often deemed evidence that population-specific 
standards should be used and revised age ranges for the new group are published. Although 
regionally-specific techniques have recently been developed for a number of populations, they 
are rarely used by most anthropologists (Falys & Lewis, 2011; Garvin & Passalacqua, 2012). 
This is potentially because interpreting the results of these methods is more complex, 
particularly the majority of the comparative data for the population or region are based on age 
estimates from standard techniques (Falys & Lewis, 2011).  
 
Although the differences found between populations may be real, and potentially interesting, it is 
also possible that they are the result of deviations in the application of the method, the structure 
of the test sample, or random variations introduced by the particular individuals analyzed 
(Wärmländer & Sholts, 2011). For these reasons, among others, Konigsberg and colleagues 
(2008) emphasize the need to collect and analyze age-related changes from large samples, 
rather than focusing on inter-population differences and the development of a multitude of new 
regionally specific standards.  
 
Phase 3: Method Validation 
 
In this chapter, the performance of standard age-estimation methods and new TA are evaluated 
using two additional known-age skeletal samples. Both samples contain individuals of European 
ancestry, but represent different populations than those in the Phase 1 reference sample. The 
first—the Athens Collection—is used to assess how the method performs on modern, well-
preserved skeletons. The skeletal features identified in Phase 1 (Chapter 3) are combined using 
the simplified TA procedure described in Phase 2 (Chapter 4). Seventy-two variations of the 
new TA procedure using different numbers of traits, statistical models, reference samples, and 
prediction intervals are tested to identify the strengths and weaknesses introduced by each 
factor. These tests are evaluated based on the overall accuracy, precision, and collective bias of 
the age estimates produced. The results are compared with the performance of the most 
commonly used age-estimation methods (Garvin & Passalacqua, 2012) to evaluate which 
procedures are the most effective for forensic and archaeological applications.  
 
The best-performing new TA method variations identified using the Athens sample are then 
applied to individuals from St. Bride’s crypt. This application assesses how the new TA method 
performs on less well-preserved individuals with significantly different diet and disease exposure 
than the Phase 1 reference sample. Because the historical sample is also significantly less well 
preserved, this test evaluates the performance of the new TA method on incomplete and 
fragmented remains, similar to those frequently encountered in archaeological contexts. 
Importantly, the individuals from St. Bride’s crypt lived contemporaneously with those from one 
of the Phase 4 archaeological samples. Thus, the results of this test are used as an indication of 
the accuracy, precision, and bias that can be expected in this archaeological application. 
Ultimately, these results indicate whether the new TA procedure is capable of producing reliable 
results in an archaeological context. Information about the individuals evaluated from the two 
collections in Phase 3 is summarized in Table 5.0 and Figure 5.0.  
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Figure 5.0. Age distributions of individuals evaluated from the Athens and St. Bride’s samples (top row) and the 
same individuals separated by sex (bottom row, males in blue and females in red).  
 
 
Phase 3 samples  
 
Athens Collection 
 
The University of Athens Human Skeletal Reference Collection, also known simply as the 
Athens Collection, was formed in two parts. The first 72 individuals were curated between 1996 
and 1997 at the Wiener Laboratory of the American School of Classical Studies in Athens. In 
1998, the collection was donated to the Department of Animal and Human Physiology at the 

Table 5.0. Skeletal collections used to test the new TA procedure in Phase 3 

Collection Location Origin Death Years N M F 

Athens Collection Athens, GR cemetery 1960 - 1997 201 111 90 

St. Bride’s Crypt London, UK crypt 1740 - 1852 168 92 76 
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University of Athens and an additional 153 individuals were acquired between 2001 and 2003 
(Eliopoulos et al., 2007). Age, sex, cause of death, place of birth, and occupation were obtained 
from death certificates and are available for 214 individuals. Individuals were collectively born in 
all areas of Greece and were interred in Athens or nearby areas between 1960 and 1997 
(Eliopoulos et al., 2007). These individuals are most similar to individuals in death cohort 2 
(post-1981) from Phase 1 and are used to investigate the effects of using probabilities estimated 
from a time period-specific reference sample to estimate age.  
 
St. Bride’s Crypt  
 
In the past 1,000 years, eight churches have existed on the current site of St. Bride’s Church in 
London, England. The seventh of these, famously designed by Sir Christopher Wren, opened in 
1675 (St. Bride's Church) and, beginning in 1740, individuals were interred in the church crypt. 
Each individual was placed in a lead coffin that included a plate inscribed with the name, sex, 
age-at-death, and death date of the person inside. Burials continued until 1854 when all crypts 
within the city of London were permanently closed in response to public health concerns 
stemming from a severe cholera epidemic (Scheuer & Bowman, 1995). After the crypt was 
bricked over, the church stood for almost another century until it was left almost entirely 
destroyed during the Blitz in December of 1940 (Harvey, 1968; St. Bride's Church). In 1952, 
during a mandatory architectural survey conducted prior to the construction of the church that 
now stands on the site, the long-forgotten crypt was discovered (Scheuer & Bowman, 1995; St. 
Bride's Church).  
 
Although little information exists on these excavations, it is known that individuals in the crypt 
were identified based on coffin plates before being placed into metal munitions boxes for 
transfer to Cambridge for analysis (Scheuer & Bowman, 1995). In some cases, multiple 
individuals, usually from the same family crypt, were placed into a single box for transport. 
Therefore, the possibility exists that remains may have become commingled; this likely affects 
only a small number of individuals, and discrepancies are noted in the collections database (J. 
Bekvalac, Museum of London, personal communication, Nov. 4, 2015). After analysis, 
individuals were transferred into plastic boxes with their associated coffin plates and, beginning 
in 1990, were transferred again to their present storage configuration (Scheuer & Bowman, 
1995). Skulls, postcranial remains, and coffin plates are stored separately in the basement 
(crypt) of St. Bride’s Church (Scheuer & Bowman, 1995).  
 
For some of the individuals who died after 1837, information from coffin plates and parish 
registers was used to locate death certificates, which provided additional data, such as place 
and cause of death (Scheuer & Bowman, 1995). This documentary evidence suggests that 
individuals buried in the crypt were, on average, of higher socioeconomic status that those 
buried in the cemeteries outside of the church (Scheuer & Bowman, 1995). However, the 
assessment of socioeconomic status is relatively subjective, because it relies heavily on stated 
occupation, which tended to change frequently during this time period and is sometimes difficult 
to interpret (Harvey, 1968). Regardless of the exact details, on the whole, individuals in this 
sample are more similar to those in death cohort 1 (pre-1953) in terms of diet and disease 
exposure, than to individuals who died in the late twentieth century. The effect of generating age 
using probabilities from both a combined and death cohort-specific reference sample will be 
assessed using this collection.   
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Establishing a baseline for method improvement  
 
As was discussed in Chapter 4 in the context of the NIJ project, to assess the performance of 
the new TA method, a baseline must be established for the performance of commonly used 
techniques. Individuals from the Athens Collection (N=201) are used to evaluate standard 
methods for the pubic symphysis (Brooks & Suchey, 1990; Katz & Suchey, 1986; Konigsberg 
et al., 2008; Suchey, Brooks, & Katz, 1988; Todd, 1920, 1921), auricular surface (Buckberry 
& Chamberlain, 2002; Lovejoy, Meindl, Pryzbeck, et al., 1985; Osborne et al., 2004), and 
existing TA (Boldsen et al., 2002), as well as variations of the new TA procedure. These 
methods were selected because they are the most-commonly used procedures by forensic 
anthropologists and archaeologists (Garvin & Passalacqua, 2012). In the interest of time, 
cranial sutures were not evaluated other than in the context of existing TA.20  
 
Figure 5.1 compares the results of commonly used methods applied by Getz to those 
produced by Milner using the same procedures on a different sample. Histograms (a,b), show 
the age distribution of individuals in each of the test samples; scatterplots (c,d) compare the 
accuracy (percent of cases where the documented age falls within the estimated range) and 
precision (average age interval length in years) of the methods tested. 21  Although the 
methods were applied by observers with differing levels of experience to different samples, 
the pattern produced is almost identical. The only significant deviation between observers is 
in experience-based estimates, which is to be expected given Milner’s decades of experience 
working with skeletons from around the world.  
 
All standard methods are either relatively accurate or precise, but one is sacrificed at the cost 
of the other. 22  In other words, these techniques provide either narrow intervals (high 
precision) that rarely contain the known age of the individual (low accuracy), or give 
extremely wide age ranges (low precision) that are often correct (high accuracy). Neither 
option is particularly useful in either forensic or archaeological contexts. The tests by both 
Milner and Getz show that experience-based estimates provide the best compromise 
between accuracy and precision, with existing TA performing the best of the standard 
methods evaluated.  
 
In this chapter, the statistical framework of existing TA is applied to a broader array of age-
informative traits, especially those providing information in middle to old age. The ultimate 
goal is to produce accurate, precise, and unbiased age estimates that approximate those of 
experienced observers, but that come with a quantifiable degree of certainty and a procedure 
that can be easily taught to others.  
 
 
 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
20  Over 100 years ago, the American anatomist Thomas Dwight (1890, p.389) discussed the poor age information 
provided by cranial sutures: “It is, I believe, pretty generally admitted among anatomists that the time and order of the 
closing of the cranial sutures are very uncertain, far too much so for the them to be trustworthy guidelines to 
determine the age of the skull.” A century of research has failed to alter the truth of this statement (M. Cox, 2000; 
Hershkovitz et al., 1997; Milner & Boldsen, 2012c). There is little reason to belabor this point here. 
21 Two additional procedures (Berg, 2008; Katz & Suchey, 1986) were evaluated but are not included in the figure 
because ages cannot be estimates for both males and females using the published standards. Therefore, the 
accuracy and precision of their estimates are not directly comparable to those of the other methods.    
22 Todd (1920,1921) originally described ten non-overlapping phases, with ranges of one to five years. The relatively 
high accuracy and precision shown here is an artifact of the final age range (Phase 10, 50+) being used in the 
calculations of average age interval length as 50 to 100 years. Below age 50, the method is highly precise with low 
accuracy. Above 50, the method is highly accurate with extremely low precision.  
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Figure 5.1. Age estimates generated by Milner (c) and Getz (d) for different samples (a,b) using commonly used 
pubic symphysis (black circles) and sacroiliac joint (grey circles) methods, existing TA, and experience-based 
estimates (white circles) showing the same pattern for different samples.  
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The New TA Procedure 
 
In Phase 1, 1,010 individuals were evaluated from four well-documented North American 
skeletal collections—WM Bass Donated, Maxwell Museum Donated, JCB Grant, and UI-
Stanford. Using this combined sample, the age-informative potential of fifty-three features was 
evaluated using both logistic and generalized additive models (Chapter 3). Forty-five features 
that showed relatively consistent patterns in each of the collections were selected for further 
testing by the research team (Chapter 4 and Appendix B). During Phase 2, the NIJ research 
team added and revised the definitions of many features, including substantial revisions to five 
Phase 1 traits. Because the data for these features were not necessary consistent with how 
they were collected in the Phase 1 reference sample, they were eliminated from further 
consideration in this dissertation.23 As a result, the variations of the new TA procedure 
evaluated here include a maximum of 40 features. The portions of current draft version of the 
NIJ scoring manual describing these traits are provided in Appendix D.24 
 
In the new TA procedure, estimating the age of an unknown skeleton using these features is a 
two-step process. First, probability curves are generated for individual traits using a skeletal 
reference sample. Second, the individual probability functions for each trait are combined based 
on the features and their character states observed in a skeleton to produce a maximum 
likelihood age-at-death estimate and range.  
 
Establishing probability density functions for skeletal features 
 
To generate the probability density function for a skeletal feature three decisions must be 
made: 1) the statistical model to be used; 2) the sample of reference data that the model will 
be fitted to; and 3) whether a single model will be fitted to the combined sample or if sex-
specific models will be generated.  
 
As described in Chapter 4, the NIJ research team is currently investigating three slightly 
different models for generating probability functions from skeletal features: 1) a generalized 
linear model, the logit (GLM); 2) a generalized additive model with an automatically selected 
best-fit smoothing parameter (GAM1); and 3) a generalized additive model with a hand-
selected smoothing parameter (GAM2). Although, in some cases, the added complexity of 
the generalized additive model may represent real and, ultimately, important underlying 
features of the data, there is also the risk that in small samples more complex models 
features may just as easily represent noise (S. N. Wood, 2006b). Additionally, fitting GAMs is 
more computationally intense and the statistical theory related to testing the fit of the model, 
generating confidence intervals, and comparing alternative models is less well understood (S. 
N. Wood, 2006b). For these reasons, the improvement in the accuracy and precision of 
estimates based on generalized additive models must be balanced against the time, 
complexity, and uncertainty introduced into the process. 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
23 Hyperostosis frontalis internal (HFI), the ossification pattern of the first rib, lipping of the occipital condyles, 
ossification along the ventral edge of the pubic symphysis (symphyseal collar), and spur development on the superior 
margin of the ischial tuberosity were eliminated from consideration in this dissertation, but remain under investigation 
by the NIJ research team.  
24 The majority of these features (75%) originated with Milner, with the remainder suggested by Getz during Phase 1 
data collection. Milner and Getz were jointly responsible for writing new trait definitions and refining these after each 
round of dissertation data collection. Definitions were further clarified and improved based on suggestions by all 
members of the research team after each round of NIJ data collection. All pictures were taken by Milner or Getz and 
incorporated into the manual in its current draft form by Getz, with input from all members of the NIJ team.  
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Once a model is selected, it is applied to a sample of reference data to generate age-specific 
probabilities for the presence of a skeletal feature. The Phase 1 reference sample (N=1010) 
can be analyzed as a whole or divided into two “death cohorts”: 1) pre-1953—individuals who 
died between 1924 and 1952 and 2) post-1981—individuals who died between 1982 and 2013. 
This division roughly separates the sample into groups that, on the whole, lived with 
substantively different diet, activity level, disease exposure, and medical care. All individuals in 
the chosen reference sample, either all of the individuals from Phase 1 or one of the death 
cohorts, can be fitted with a single model for all individuals or divided by sex.  
 
Figure 5.2 shows the eighteen combinations of the three model types (GLM, GAM1, and 
GAM2), reference sample (all Phase 1 individuals or death cohort 2), and combined or sex-
specific divisions that can be evaluated. Unfortunately, there are too few females in death cohort 
1 to allow sex-specific probability curves to be generated, so only 15 different variations are 
assessed in this dissertation.  
 
 

 
 
Figure 5.2. Eighteen variations of how probabilities can be calculated for traits from the reference sample collected in 
Phase 1. Only fifteen are evaluated here because there are too few females in death cohort 1 (grey boxes) to allow 
sex-specific probability curves to be generated.  
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Combining features to estimate age  
 
To generate a maximum likelihood age-at-death estimate and associated prediction interval for 
an individual, the probability functions for each trait observed in the skeleton are combined. As 
illustrated in Figure 5.2, the probabilities for each trait can be generated in one of eighteen ways 
based on slightly different statistical models and reference samples. To simplify calculations, the 
natural log of each trait probability (i.e., log-likelihood) is used to calculate a cumulative log-
likelihood function for each individual. Equation 5.0 shows the log-likelihood function for an 
individual with n skeletal traits. Each trait in an individual (yj) can have a value of 0 (absent) or 1 
(present), which is what determines which probabilities are added to the likelihood function. If 
the trait is present, then yj = 1, the second half Equation 5.0 becomes 0, and only the probability 
of the trait being present is added to the likelihood function. If the trait is absent, then yj = 0, the 
first half of Equation 5.0 becomes 0, and only the probability of the trait being absent is added.  
 
𝐿𝑛  𝐿 =    {𝑦! 𝑙𝑛[𝑃𝑟 𝑦 = 1   𝑥)]!

!!! +   (1 − 𝑦!)𝑙𝑛  [1 −   Pr   𝑦 = 1   𝑥)]}      (5.0) 
 
As described in Chapter 4, a 95 or 99% prediction interval around the maximum likelihood age 
estimate can be calculated using a procedure based on the likelihood-ratio test. The test is 
based on the concept of using a hypothesis test to form a confidence interval around the single 
parameter estimated in the logistic model (Boldsen et al., 2002; D. R. Cox & Hinkley, 1979). 
Although this procedure is widely used for logistic models, the statistical basis for its use on the 
other models tested here is somewhat less justified because hypothesis testing for GAMs is 
only approximate (S. N. Wood, 2006b). However, this procedure is currently used to estimate 
prediction intervals for all of the likelihood functions, regardless of the model used to generate 
them, to facilitate comparisons between them. If the decision is made to incorporate the 
generalized additive models into the new TA procedure, other members of the NIJ research 
team will further investigate whether this procedure is appropriate and potential alternatives.  
 
Correlations between traits 
 
As also discussed in Chapter 4, probabilistically combining features in a transition analysis 
framework requires the assumption that each trait provides independent information about age 
(Boldsen et al., 2002). If correlated traits are used to estimate age then the intervals produced 
will be systematically too narrow. Although existing TA includes a statistical correction for 
correlated features (Boldsen et al., 2002), the accuracy of the method is less than would be 
expected given the use of 95% prediction intervals (see Figure 5.1). This likely indicates that 
the effects of trait correlations have not been entirely removed using the current correction.  
 
This issue is of particular importance for new TA procedure because of the large number of 
new features identified throughout the skeleton. The correlations between and among them are 
currently unknown and potentially complex. Ultimately, the new TA method must balance the 
need to use enough traits to produce reasonably precise estimates with the potential reduction 
in accuracy resulting from trait correlation. No statistical correction for trait correlations is 
currently included in the tests of new TA procedure presented here. So, as a preliminary 
assessment of the relationships between trait pairs, the Phase 1 reference data set (N=1010) 
was used to produce a correlation matrix. The correlation coefficients can be used a rough 
gauge of the probable impact of correlated traits in the new TA procedure. A coefficient of one 
means perfect agreement, while zero indicates no relationship. A positive coefficient indicates 
that when one trait is present the other is also likely to occur, with a higher number indicating a 
greater probability of the traits both appearing in the same individual. A negative coefficient 
indicates the opposite relationship, where if one trait is present, the other is less likely to occur. 
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The full correlation matrix for all trait pairs is provided in Appendix E. The extent to which the 
magnitude of each correlation affects the estimated age interval and the level of correlation 
between features that will ultimately be deemed acceptable is currently unknown. Therefore, the 
correlation coefficients in the appendix are colored by the strength of the relationship (yellow: 
0.3–0.499, orange: 0.5–0.599, red: 0.6–0.99) to aid in the assessment of patterns. For the sake 
of simplicity, p-values were not included in this preliminary assessment, but will need to be 
evaluated in future analyses. More sophisticated methods for assessing associations between 
traits pairs and groups of features will be investigated as part of the larger research team effort. 
 
At first glance, the correlation matrix primarily reveals relationships that knowledge of the 
skeleton suggests should occur. For example, the four bone “weight” scores—subjective 
evaluations of the relative heaviness of the bones for their size25— exhibit some of the highest 
correlations among all of the trait pairs assessed (Table 5.1). Because the factors resulting in 
lower than average bone density (i.e., osteopenia) tend to have effects throughout the skeleton 
rather than targeting specific areas (Mundy, 1999), it should not be surprising that bone weight 
scores are correlated both with increasing age, as well as with each other. Also, not surprisingly, 
features located on the same skeletal element, such as those found on the lesser tubercle, 
medial epicondyle and lateral epicondyle of the humerus (Table 5.2) show high correlations.  
 
 

Table 5.1 Correlation matrix for the subjective weights of four bones 

 
calcaneus humerus os coxa tibia 

calcaneus ---- 0.482 0.541 0.627 
humerus 0.482 ---- 0.625 0.709 
os coxa 0.541 0.625 ---- 0.608 
tibia 0.627 0.709 0.608 ---- 

 
 

Table 5.2 Correlation matrix for four traits on the humerus 

 
latEpicondyle medEpicondyle lesserTubBumps lesserTubLip 

latEpicondyle ---- 0.519 0.349 0.520 
medEpicondyle 0.519 ---- 0.388 0.505 
lesserTubBumps 0.349 0.388 ---- 0.541 
lesserTubLip 0.520 0.505 0.541 ---- 

 
 
However, not all trait correlations are as intuitive. For example, “shingle ribs”—flat, brittle ribs, 
with extremely thin cortical bone—and depressions of the parietal bones, which typically 
associated with thinning of the skull, were assumed by the research team to be related to 
osteoporotic processes. Surprisingly, although these features may have some relationship with 
light bones elsewhere in the skeleton, the traits were not highly correlated.  
 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
25 As part of the NIJ project, these four skeletal elements are now measured and weighed to generate a rough, but 
objective, measure of bone "density." Weight is also scored subjectively by research team members so the 
correlation between subjective and objective bone weight scores can be assessed. Length and weight data were 
collected for the Athens and St. Bride’s skeletons, but cannot be used here because reference data from Phase 1 are 
not available.  
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Tables 5.3 shows that while pairs of bones weight scores for the calcaneus, os coxa, humerus 
and tibia are highly correlated (between 0.482 and 0.709), these traits have much lower 
correlations with thinned parietal bones and shingle ribs than would be expected if all six 
features were strongly influenced by the same underlying factors.  
 
 

Table 5.3 Correlation matrix for traits based on thin and light bones 

 

calcaneus 
wt. 

os coxa 
wt. 

humerus 
wt. 

tibia 
wt. 

parietal  
depression 

rib 3-10 
thickness 

calcaneus wt. ---- 0.541 0.482 0.627 0.089 0.201 
os coxa wt. 0.541 ---- 0.625 0.608 0.126 0.212 
humerus wt. 0.482 0.625 ---- 0.709 0.120 0.193 
tibia wt. 0.627 0.608 0.709 ---- 0.125 0.207 
parietal depression 0.089 0.126 0.120 0.125 ---- 0.143 
rib 3-10 thickness 0.201 0.212 0.193 0.207 0.143 ---- 

 
 
The relationship between lipping and candlewax in different areas of the spine (Table 5.4) is 
also not as clear as might be expected. Lipping in different portions of the spine is fairly strongly 
correlated with lipping in each of the other areas of the spine, but the same relationship is not 
seen with the presence of candlewax. To further complicate the issue, lipping and candlewax do 
not appear to be highly correlated in the cervical and lumbar vertebrae, but have a moderate 
correlation (0.40) in the thoracic region (Table 5.4).  
 
 
Table 5.4 Correlation matrix for lipping and candlewax in three areas of the vertebral column 

 
cervLip thorLip lumLip cervWax thorWax lumWax 

cervLip ---- 0.393 0.480 0.133 0.268 0.103 
thorLip 0.393 ---- 0.503 0.091 0.402 0.132 
lumLip 0.480 0.503 ---- 0.132 0.320 0.139 
cervWax 0.133 0.091 0.132 ---- 0.188 0.218 
thorWax 0.268 0.402 0.320 0.188 ---- 0.302 
lumWax 0.103 0.132 0.139 0.218 0.302 ---- 

 
 
Only a few negative correlations were found and they suggest potentially interesting biological 
relationships. Table 5.5 shows several of the negative correlations that were found between 
traits involving excess formation of bone (cervical candlewax and superior-anterior fusion of the 
sacroiliac joint) and bone loss (weight of the innominate and shingle ribs). A negative 
relationship between these traits fits with the typical pattern that individuals tend to be “bone 
formers” or “bone losers” but not both; the factors governing this relationship are poorly 
understood (A. Schmitt, Wapler, Couallier, & Cunha, 2007). 
 
 

Table 5.5 Correlation matrix for several traits based on excessive bone formation or resorption 

 
cervWax SI Fusion os coxa wt. rib 3-10 thickness 

cervWax ---- 0.130 -0.018 -0.026 
SI Fusion 0.130 ---- -0.010 -0.047 
os coxa wt. -0.018 -0.010 ---- 0.212 
rib 3-10 thickness -0.026 -0.047 0.212 ---- 
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Evaluating Variations of the New TA Procedure: The Athens Sample  
 
Age estimates were generated for individuals in the Athens sample using either all 40 of the 
features identified in Phase 1 or a sub-group of 30 features selected by the NIJ research team. 
Probabilities generated using twelve of the variations in Figure 5.2 were combined to produce 
maximum likelihood point estimates and ranges using both 95% and 99% prediction intervals. 
These tests resulted in forty-eight26 sets of ages and ranges that were evaluated for overall 
accuracy and precision. Collective bias is evaluated later in this chapter.   
 
Figure 5.3 shows the average accuracy and precision of the ages generated using different 
method variations for the same sample.27 As expected, using a wider prediction interval results 
in wider ranges with correspondingly higher accuracy (95% PI—filled symbols, 99%PI—open 
symbols). On average, a 99% versus and 95% prediction interval increases the average age 
interval width by 6.3 years and increases accuracy by around 13%. In the Athens sample, this 
increase translates to an average of 26 additional individuals who were accurately aged (known 
age fell into the estimated range) using a wider prediction interval.  
 
 

 
 
Figure 5.3. Each of the four point clusters shows the average accuracy and precision of age estimates for the entire 
Athens sample using trait probabilities from 12 slightly different model variations (shown in Figure 5.2). Differences 
between clusters are the result of the number of features (circles/triangles) and the prediction interval (filled/open) 
used to calculate the maximum likelihood estimate and its associated range.  
 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
26 These tests do not include probabilities generated using death cohort 1 (pre-1953) because it would be an 
inappropriate reference sample for the modern individuals of the Athens Collections. The effect of using an 
inappropriate reference sample will be considered later in this chapter.   
27 The same 12 model variations were tested for each combination of traits and prediction interval; however, not all 12 
symbols are visible in each cluster because some variations produced the same average accuracy and precision.  
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Comparing the estimates generated using all 40 features (triangles) to those based on a subset 
of 30 features (circles) reveals the same pattern of decreased precision yielding increased 
accuracy. Although this finding is not surprising based on the way accuracy is defined, it is 
important in these preliminary evaluations to verify that the method is performing as expected. It 
is also worth noting that in Figure 5.3, estimates generated using 30 features (circles) have 
higher accuracy than those based on 40 features (5.3) for all method variations. Although 
perhaps counterintuitive, more data do not necessarily result in better age estimates.28 As 
previously discussed, the use of correlated traits reduces the overall accuracy because of an 
inappropriate narrowing of the prediction intervals. This effect can be seen in Figure 5.3 as the 
obtained accuracy in all tests is lower than what would be expected based on the use either a 
95 or 99% prediction interval.  
 
Figure 5.4 shows the results of the same tests as in Figure 5.3, but groups the results by the 
type of model (GLM, GAM1, or GAM2) and reference sample (combined or death cohort 2), as 
well as whether combined or sex-specific probabilities were used. Within each cluster, models 
fitted to the combined reference sample (black symbols) generally showed the best compromise 
between accuracy and precision. Neither the logistic nor the generalized additive model 
consistently generated better age estimates.  
 
 

 
 
Figure 5.4. Results of the same method variations shown in Figure 5.3, identified by model choice, reference sample, 
and whether or not sex-specific probabilities were used. Variations using a combined, non-sex-specific reference 
sample resulted in the best compromise between accuracy and precision. No other consistent patterns are present. 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
28 A similar phenomenon has been discussed by Stephen Ousley in the context of the appropriate number of traits to 
use in a discriminant function analysis (DFA) to estimate ancestry (Ousley & Jantz, 2012).  
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Although conventional wisdom suggests that models generated using samples of individuals 
who are more similar to the individual being evaluated would generate more accurate and 
precise results, this was not seen here. This is possible because the logistic regression and the 
GAMs used here require large samples to effectively characterize information. Therefore, the 
variation introduced by a reduction in sample size for each of the subgroups could be 
responsible for the less accurate age estimates seen in the ages generated with time period- 
and sex-specific models.  
 
Using a reduced feature set to estimate age  
 
Estimating age with a reduced number of features (30 versus 40) results in a slightly better 
compromise between accuracy and precision. To investigate whether other reduced-size 
feature sets would further improve age estimates, two approaches for selecting alternative 
groups of traits were evaluated. The first is a subjective approach where features are hand-
selected based on their perceived age-informative value based on experience and the 
consistency of the information obtained from different model variations. The second approach is 
a two-step iterative search process designed to identify the smallest number of features capable 
of providing adequate coverage of the adult lifespan. To simplify interpretation of the results, 
both procedures are evaluated using only probabilities generated by logistic models  
 
Hand-Selected Features  
 
A subset of all possible features was selected in a two-step process based on expert judgment. 
First, the transition plots for the logistic and ten generalized additive model curves with different 
smoothing parameters fitted to the combined reference sample were reviewed for all forty 
features. Twenty-three features that showed relatively little variation among the models were 
identified. In step two, highly correlated trait pairs were identified using the correlation matrix in 
Appendix E. The transition curves of the features in each pair were re-evaluated and only the 
most age-informative feature was included in the final trait set. Care was also taken to ensure 
that the traits selected provided adequate coverage of the entire lifespan. Fourteen features 
were ultimately selected for testing.  
 
Iterative Search 
 
The first step in the process is to identify four traits that collectively provide good coverage of 
the entire adult lifespan to “seed” the iterative search algorithm used in step two.29 There are 
91,390 possible combinations of the forty traits and each set can produce a maximum of sixteen 
maximum likelihood age estimates. The “best” combination of four features is the one that 
minimizes the absolute mean error of the age estimates produced for the entire test sample. In 
essence, the best combination is one where the sixteen possible age estimates fall closest to 
the greatest number of skeletons in the test sample. Because of this, if this search procedure is 
used on a test sample with an irregular age distribution, it will simply pick the combination of 
features that best mimics that structure.  
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
29  A set of four traits was chosen to seed the algorithm because it provided a sufficient number of possible maximum 
likelihood age estimates to adequately cover the adult lifespan while remaining computationally practical. A search for 
the best five features (32 possible maximum likelihood estimates) would require a program run time of approximately 
two and half days to evaluate all 658,008 combinations – likely for only a minimal improvement. 
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To avoid this scenario, a training set of 300 individuals with an essentially uniform age 
distribution was selected from the Phase 1 reference data.30 Age was estimated for all 300 
individuals in the set using each of the possible combinations of four features. Because the test 
sample had an essentially uniform age structure, the four features that were selected were 
those where the sixteen possible maximum likelihood ages at death provided the best coverage 
of the entire adult lifespan. Figure 5.5 shows the logistic transition curves generated from the full 
Phase 1 reference sample for the four features selected.  
 
 

 
 
Figure 5.5 Four traits identified as the combination of features that provided the best coverage of the entire adult age 
range: a) medial clavicle epiphysis fusion, b) scapula glenoid fossa margin, c) humerus lesser tubercle bumps, and d) 
humerus weight.  
 
 
In the second step, the four features and their associated absolute mean error are used as a 
starting point, or seed, for an iterative search algorithm. The program begins by adding the next 
feature on the list to the original four and estimating the age of all individuals in the test sample 
using the new group of five features. The process is repeated for each of the traits on the list 
and an absolute mean error is calculated for the sample based on the age estimates produced 
by each set of five features (the original four selected as a seed, plus a fifth from the list). The 
set of five features that produces the lowest mean error is then used to start the next round of 
evaluation, where each of the remaining traits is added to those already selected and the 
absolute mean error of the estimates produced by each group of six features is assessed. This 
process continues until adding another trait fails to improve the age estimates.  
 
It is important to note that this is a greedy algorithm, meaning that each step of the program 
makes an immediately beneficial decision in the hope of arriving at an optimal solution with a 
minimal number of steps. In each iteration, the procedure selects the single trait that improves 
the absolute mean error of the estimates when used in combination with the group of traits 
already selected and continues. The algorithm does not evaluate every possible combination of 
traits in each loop. So, for example, rather than evaluating the entire test sample of 300 
individuals using all possible combination of six features—3,838,380 possible combinations—
the program only tests the performance of 36 groups, each containing the already selected set 
of five features plus one of remaining features on the list.  
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
30  Even with a reference sample of over 1,000 individuals from four skeletal collections to choose from, it was not 
possible to get enough individuals at the ends of the distribution (under 30 and over 90 years of age) to 
simultaneously have an equal number of individuals at each age and a sufficiently large test sample size. Three 
hundred individuals was the best compromise between obtaining a large enough test sample and maintaining an 
essentially uniform age distribution.  
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A set of 21 features was selected using this algorithm. Figure 5.6 compares the known age 
distribution of the "uniform" test sample with the estimated distribution obtained using the 
iteratively selected traits. The TA maximum likelihood estimates (b1,b2) do not exactly mimic 
the uniform distribution (a1,b1) when age is broken down into approximately one-year (a) or 
five-year (b) increments, but these data show two important features. First, when the estimated 
ages are grouped into five-year categories, the new TA procedure provides a relatively good 
approximation of the age distribution of the test sample. This is particularly heartening because 
these estimates were generated with the simplest of the statistical models tested here (logistic) 
with a combined reference sample, using non-sex-specific probabilities, and without specifying a 
particular prior distribution or correcting for correlated features. Second, the traits selected by 
the algorithm are capable of producing maximum likelihood age-at-death estimates at 
essentially every year of the adult lifespan between 15 and 105 years. Although the point age-
at-death estimates shown here tend to under-represent the number of people over 80 years of 
age, the ranges typically capture the true age of individuals in this portion of the lifespan.  
 
 

 
 
Figure 5.6. Age distributions of the known (a1,a2) and estimated ages of the "uniform" test sample (N=300)  
produced using the iteratively-selected features (b1,b2), shown in approximately one-year (a1,b1) and five-year 
(a2,b2) categories.  
 
 
Table 5.6 lists all 40 features considered in this phase and identifies those included in each of 
the reduced feature sets evaluated. Figure 5.7 compares the average accuracy and precision 
obtained using 14, 21, or 30 features to that produced when using all 40 features for the 
individuals in the Athens sample. The results are shown for both a 95% (filled symbols) and 
99% (open symbols) prediction intervals. 
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Table 5.6 Combinations of traits tested in variations of the new TA procedure  
  Features Used 
 Trait 40 30 21 14 
1 C1 eburnation X X X X 
2 C1 lipping X X   
3 calcaneus weight X X   
4 cervical candlewax X X X  
5 cervical lipping X X   
6 clavicle lateral macroporosity X X   
7 clavicle medial epiphysis fusion X X X X 
8 clavicle medial bone growth X X X  
9 femoral fovea margin lipping X X X X 
10 humerus lateral epicondyle X X X  
11 humerus lesser tubercle bumps X X X X 
12 humerus lesser tubercle margin lipping X X   
13 humerus weight X X X X 
14 innominate weight X X X  
15 ischial tuberosity bone growth X X X X 
16 L5 inferior margin lipping X X   
17 L5 superior margin lipping X X X X 
18 lumbar candlewax X X   
19 lumbar lipping X X  X 
20 medial trochanteric fossa exostoses X X   
21 acetabulum posterior margin lipping X X   
22 parietal depression X X X  
23 R310 body thickness (shingle ribs) X X   
24 S1 superior margin (round) X X  X 
25 scapula glenoid fossa margins (round) X X X X 
26 thoracic candlewax X X   
27 thoracic lipping X X   
28 tibia weight X X   
29 trapezium lipping X X X X 
30 trochanteric fossa exostoses X X X  
31 AIIS exostoses X  X X 
32 acetabulum articular surface bone growth X    
33 femoral head surface bone growth X    
34 humerus medial epicondyle X    
35 R2 rim edge profile X  X  
36 R310 rim edge profile X    
37 radius medial crest X  X X 
38 S1-2 fusion X  X  
39 superior-anterior sacroiliac joint fusion X  X  
40 sternal central dorsal ridges X  X X 
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Figure 5.7. Comparison of new TA method variations using the logistic probabilities from different numbers of 
features. Circles (all 40 traits) and squares (30 traits) are the same data shown for both 95% and 99% prediction 
intervals. These are compared to the results using smaller samples of hand-selected (14, diamonds) and iteratively 
selected features (21,triangles). Athens Collection, N=201. 
 
 
As expected based on previous tests of existing methods and the new TA procedure, using a 
wider confidence interval to estimate age increases the length of the age interval produced and 
increases accuracy. The two new sets of features—14 hand-selected traits (diamonds) and 21 
interactively selected features (triangles)—show a slightly different relationship between their 
accuracy and precision. Surprisingly, the set of 21 features (filled triangles) have age ranges 
that are about five years wider (on average), but differ in average accuracy by less than 1% to 
ages produced using 30 features (filled squares). Although this is a relatively minor difference, it 
deviates slightly from what is expected. It is possible that this separation is an artifact of the 
relatively small sample tested. It is also possible that while ranges are increasing because there 
are fewer traits, there are also fewer correlated features that could be artificially narrowing the 
interval. The NIJ project will provide the larger data sets required to further investigate these 
patterns in different samples and subgroups of features.  
 
Choice of reference sample: a cautionary note 
 
In the variations of the TA procedure tested above, individuals from the Athens Collection were 
aged using probabilities from either a combined reference sample or only those in death cohort 
2 (post-1981), which is likely to be the most similar to the Greek sample in many respects. 
These tests did not produce consistent improvements in the average accuracy and precision of 
age estimates using either time period or sex-specific reference samples. Figure 5.8 shows the 
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results of ages estimated using the same model, set of features, and prediction interval, but with 
different reference samples. Using a combined reference sample (black symbols) produces 
slightly better accuracy in all cases, with very similar estimates being produced using death 
cohort 2 (grey symbols). However, the use of death cohort 1 produces wider age ranges with 
reduced accuracy. In other words, the use of appropriate time period-specific probabilities did 
not result in improvement, but using an inappropriate reference sample appears to have a 
significant adverse effect.  
 
 

 
 
Figure 5.8. Comparison of ages generated with logistic model trait probabilities based on different sets of features 
and reference samples. Using a reference sample that is a poor fit for the test samples results in wider age ranges, 
lower precision, with reduced accuracy. Athens Collection, N=201. 
 
 
The substantial decrease in accuracy obtained using death cohort 1 could be influenced by the 
smaller sample used to generate the trait probabilities. Because death cohort 1 has many fewer 
individuals at both ends of the age distribution than death cohort 2, the transition curves tend to 
be less consistent in those ages. Although the transition curves between the cohorts look 
similar, there is also the possibility that real and potentially meaningful differences in the skeletal 
aging process exist that cannot be detected using these samples.   
 
This small test should be taken as a cautionary tale for the possible results of using methods 
based on inappropriate reference samples. In forensic contexts, and in essentially all 
archaeological ones, it is often impossible to identify which regional or population-specific 
reference sample would be the most appropriate. While using a diverse, combined reference 
sample could potentially decrease the precision of individual age estimates, the risks 
associated with choosing an inappropriate reference sample may be unacceptably high. For 
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most situations, the increase in applicability without sacrificing accuracy provided by using a 
combined sample is desirable. The NIJ project will be able to test whether the same result is 
seen using modern populations from around the world and contribute more substantive 
evidence to the population-specific method debate.  
 
Performance of new TA relative to commonly used methods 
 
Figure 5.9 presents the results obtained using the new TA procedure (95% prediction intervals 
only) alongside commonly used methods for the pubic symphysis and auricular surface, existing 
Transition Analysis, and experience-based estimates for the same individuals. Black symbols 
indicate variations of the new TA procedure, while standard methods, existing TA, and 
experience-based estimates are in grey.  
 
 

 
 
Figure 5.9. Direct comparison of the accuracy and precision of age estimates generated using variations of the new 
TA procedure (black symbols), commonly used methods for the pubic symphysis and auricular surface, and 
experience based estimates. Athens Collection, N=201. 
 
 
The new TA method produces similar levels of accuracy to two of the most commonly used 
procedures by forensic anthropologists—Suchey-Brooks and Buckberry-Chamberlain—(Garvin 
& Passalacqua, 2012), but with age intervals that are, on average, half as wide. This is 
particularly impressive because the new TA procedure does not include any features of the 
pubic symphysis or the auricular surface. Although these areas include some features that may 
improve age estimates, particularly in the youngest part of adulthood, they were intentionally 
excluded from these preliminary investigations. A goal of this dissertation was to test the 
performance of the transition analysis approach with a larger number of previously unknown or 
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under-utilized skeletal features. Excluding pelvic joints from the analysis allowed the value of the 
new features to be unambiguously demonstrated. Modifications of the pubic symphysis and 
auricular surface features used in existing TA are currently under investigation by the NIJ 
research team and will be included in the final version of the new TA procedure released to the 
osteological community. Pubic symphysis and auricular surface trait data consistent with what 
were collected by the NIJ team were collected for individuals in the Athens and St. Bride’s 
samples and can be included in future tests of new TA. 
 
Bias in Maximum Likelihood Age Estimates 
 
Although informative, plots of overall age estimate accuracy and precision tell only part of the 
story. In addition to finding a realistic compromise between the width of the intervals and 
accuracy, an ideal age-estimation method must also produce point estimates that are close to 
the chronological age of the individual without systematic age-estimation bias. This issue is 
particularly important for paleodemographic analyzes where overall characteristics of the 
sample are more critical than those of individual skeletons. 
 
One way to assess the average bias present in a set of age estimates is to fit a linear regression 
model without an intercept term, often referred to as regression through the origin (RTO). The 
model is fitted to the estimated maximum likelihood point ages and their associated known ages 
(Equation 5.0). Because there is no intercept term, the critical feature of the regression is the 
coefficient for age and its standard error.  If the confidence interval for the coefficient contains 
the value one (1), then the regression line fitted for the sample is statistically indistinguishable 
from the identity line. 
 
 
estimated age = coefficient*(documented age) + error      (5.0) 
 
 
Figure 5.10 shows the RTO coefficients and associated 95% confidence intervals for standard 
methods (1-7), experience-based estimates (8), and variations of the TA method tested above 
(9-40). The dotted box indicates the six methods where the fitted regression could potentially 
have a slope of one. Variations of the new TA method tested with 99% prediction intervals are 
redundant in this context because changing the prediction interval does not change the 
maximum likelihood point estimate.  
 
The analysis of slope provides an additional piece to the puzzle, the full picture of method 
performance is still incomplete. Because fitting a linear regression without the intercept term 
renders the R-squared value—a common way to assess how well a linear regression model fits 
the data)—essentially meaningless, an additional plot is needed to assess the scatter of points 
around the identify line. 
 



	
   85 

 
 
Figure 5.10. RTO coefficients and associated confidence intervals for age estimates produced for the Athens sample 
(N=201) using standard methods (1-7), observer experience (8), and variations of the new TA procedure (9-40). 
Confidence intervals that include one (dotted box) indicate that the estimates produced are collectively unbiased.  
 
 
Figure 5.11 shows the estimated ages produced by three standard methods (circles) with the 
fitted regression lines (dotted lines) compared to the identify line (solid line). The associated 
coefficient for each RTO with its associated confidence interval is also shown for each method. 
Although the fitted regression for the Buckberry and Chamberlain (2002) auricular surface 
method (c) falls very close to the identify line, the data are a poor fit. Furthermore, as shown in 
Figure 5.9, although this method demonstrated the highest accuracy of any of the techniques 
evaluated, it did so by decreasing precision to the point where its age ranges cover most of 
adulthood. So, while technique offers some improvement over Lovejoy et al. (1985) for the 
same anatomical area (Figure 5.11, b), its performance is still far from ideal.  
 
 

 
 
Figure 5.11. Age estimates produced by three commonly used techniques: (a) (Lovejoy, Meindl, Pryzbeck, et al., 
1985), (b) (Brooks & Suchey, 1990; Suchey et al., 1988), and (c) (Buckberry & Chamberlain, 2002) with a fitted linear 
regression (dotted line), regression coefficient, and associated confidence interval. Identify line (solid line) shown for 
comparison. Athens Collections, N=201. 
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Similar scatterplots are shown for experience-based estimates, existing TA, and four variations 
of new TA using different numbers of features in Figure 5.12. All four variations of the new TA 
procedure collectively overestimate age, with the biggest deviations occurring in old age. This 
is, however, a long-recognized effect of using a uniform prior distribution (Boldsen et al., 2002). 
Although this is not a desirable feature of the new procedure, it actually provides support that 
the new features are collectively providing useful, unbiased age information throughout 
adulthood. The age estimates generated with the existing Transition Analysis method were also 
produced using a uniform prior distribution. However, because these ages are based on 
changes in the pubic symphysis and auricular surface, which fail to keep pace with 
chronological age after middle age, existing TA still suffers from the problem of underestimating 
the age of individuals after around age 50 (Milner & Boldsen, 2012c). 
 
Figure 5.13 provides a final look at the results of the standard methods and new TA evaluated in 
this section and ties together the concepts of accuracy, precision, and age-estimation bias. The 
known age of each individual is represented by a black dot with the estimated age range and 
point estimate shown as grey lines. This presentation clearly illustrates the relationship between 
accuracy and precision and how easily one can be improved at the expense of the other. For 
example, compare the Todd (1920,1921) and Brooks and Suchey (1988, 1990) methods based 
on the pubic symphysis and the Lovejoy et al. (1985) and Buckberry and Chamberlain (2002) 
techniques for the auricular surface.31 These graphs clearly show the narrower age ranges and 
reduction in bias throughout the adult lifespan of the new TA procedure relative to existing TA.  
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
31 Figure 5.9 demonstrates this relationship in a different form.  
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Figure 5.12. Age estimates produced by an experienced observer (Getz), existing TA (Boldsen et al., 2002), and four 
variations of the new TA procedure using logistic regression probabilities from different numbers of features. The 
identity line (solid line) and fitted regression through the intercept (dotted line) are shown for comparison. Athens 
Collection, N=201. 
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Figure 5.13. Age ranges produced by an experienced observer, existing TA, several standard methods, and the two 
variations of the new TA procedure. Black dots indicate the known age of each individual, grey lines indicate the age 
ranges estimated by each method. Athens Collection, N=201. 
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Evaluation of New TA on a Historical Sample: St. Bride’s Crypt  
 
In the previous section, the new TA procedure was applied to modern individuals from the 
Athens Collection to establish a baseline for the method’s performance on well-documented and 
well-preserved remains. Although these results are promising, adequate performance on 
modern individuals does not necessarily imply that the method is equally applicable, or will 
provide the same results, when applied to archaeological samples.  
 
In this section, the new TA procedure is applied to individuals from St. Bride’s crypt to assess 
the performance of the method on a sample that is much different than those in the reference 
sample. Although the individuals in the St. Bride's sample were interred in a crypt and not 
directly in the ground, their unique history—decomposition in lead coffins, bombed, exposed to 
the elements, excavated, shipped for analysis, re-boxed several times, and used frequently for 
research—has resulted in a sample with a similar state of preservation to what would be 
encountered in many archaeological contexts. Thus, this sample provides a good gauge for how 
useful the new traits are for estimating age compared to what can currently be done using 
existing procedures. Perhaps more importantly, many of the individuals in the St. Bride’s crypt 
sample lived contemporaneously with the individuals who form one of the Danish archaeological 
samples (Klosterkirke) that is evaluated in Phase 4.  
 
The age estimates generated by standard methods and new TA are compared to those 
produced in comparable tests with the Athens sample. These data are used again in Chapter 6 
to assess the appropriateness of different procedures for modeling population age-at-death 
distributions. Comparing the age estimates obtained for the St. Bride’s sample with those from 
the Athens Collection indicates whether the method is likely to provide reliable age estimates for 
archaeological samples. 	
  
 
The effect of skeletal preservation  
 
One factor that may affect the performance of the new TA procedure is the level of skeletal 
preservation. In many archaeological settings, and often in forensic ones, standard features for 
assessing adult age, including the pubic symphysis and auricular surface, are missing or 
damaged. The St. Bride’s sample catalog divides the sample into three groups based on 
preservation of the remains: 1) good, 2) moderate, and 3) poor. Approximately half of the 
individuals included in the Phase 3 sample were listed as grade 1 (good condition with no 
cortical bone erosion), while the remaining portion divided between grade 2	
  (moderate condition 
with some erosion of bone prominences and articular surfaces), and grade 3 (poor condition 
with extensive postmortem damage and missing or eroded surfaces throughout).  
 
With this in mind, the percentage of the Phase 3 St. Bride's sample that could be evaluated 
using the pubic symphysis (light grey), auricular surface (dark grey), observer experience, 
existing TA, and the new TA procedure (black) are shown in Figure 5.14. As is often reported in 
other studies, the auricular surface is more often preserved than the pubic symphysis. For this 
sample, in cases where only part of the scoring area was present or portions were slightly 
damaged, multiple scores were assigned (e.g., Suchey-Brooks Phases 5-6) to account for the 
possible features that may have been present in the damaged area. Therefore, the percentages 
of individuals who could be scored using each method are slightly higher than they would be if 
only perfectly preserved individuals were scored. Although assigning multiple phases allows 
something to be said about partial or damaged remains, it often widens the age range to the 
point where it covers almost all of the adult lifespan, which provides little useful information. 
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The high percentage of individuals that could be scored with existing TA, despite the high 
number of damaged pelvis joints, results from the use of separately scored components. 
Existing TA has a maximum of 32 scores (9 for each auricular surface, 5 for each pubic 
symphysis, and 5 cranial suture scores). New TA has a maximum of 40 scores, which does not 
include any features from the pelvis joints, and does not include bilateral scores at this point In 
the data presented here, a minimum of five scores had to be present for both existing TA and 
new TA to be counted in the percentage of individuals who could be evaluated. Just over 95% 
of the individuals in the sample (160/168) could be scored using the new TA procedure, while 
only 46% (77/168) could be assessed using the method most commonly used by forensic 
anthropologists and archaeologists to evaluate the pubic symphysis (Brooks & Suchey, 1990; 
Falys & Lewis, 2011; Garvin & Passalacqua, 2012; Suchey et al., 1988).  
 
 

 
 
Figure 5.14. Percentage of the St. Brides crypt sample (N=168) that could be aged using methods for the pubic 
symphysis (light grey), auricular surface (dark grey), and those that use features from multiple skeletal elements 
(experience-based estimates, existing TA, and new TA) (black).  
 
It is usually assumed that any information about a skeleton is better than no information at all, 
which is why multiple stages are often assigned to individuals, even though the resulting ranges 
span most of adulthood. Because many skeletons in archaeological samples are likely to have 
at least some features that cannot be scored, the number of features required to produce 
reasonable age estimates, individually or in aggregate, becomes a key issue. Figure 5.15 shows 
the distribution of the number of features that could be scored on each skeleton in the St. 
Bride’s sample. Only a single individual had all 40 features intact. The majority of individuals in 
the sample have between 20 and 40 observable features, which previous tests with the Athens 
sample indicate may be enough to produce reasonable estimates.  
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Figure 5.15. Distribution of the number of scorable features of each individual in the St. Brides sample (N=168).   
 
 
Tests with the Athens sample indicated that using a reduced set of 30 features produces the 
best compromise between accuracy and precision. However, as shown in Figure 5.15, if only 
individuals with 30 or more features were used, a large fraction of the St. Bride's sample could 
not be evaluated. Additionally, it is unclear whether different groups of 30 features would 
provide comparable accuracy and precision to the specific group of 30 features that were 
originally tested. Fortunately, Figure 5.16 (and the scatterplots previously presented in Figure 
5.12) demonstrate that estimates produced using sets of 14, 21, 30, and 40 features are similar. 
Although, as would be expected, the highest level of variation is seen in estimates generated 
using the smallest set of features, the estimates do not differ substantially among the groups.  
 
The age estimates produced for the St. Bride’s sample provide additional evidence to suggest 
that threshold of approximately 20 features may be appropriate for evaluating archaeological 
samples. Figure 5.17 shows the lengths of the age intervals generated using different number of 
features. The pattern using probabilities based on a combined reference sample (a) or either of 
the death cohorts (b) is the same—the length of the interval narrows as additional features are 
added until around 25 features, when no additional improvement occurs. Very narrow range 
lengths most often occur at the extremes of the age distribution where all traits that could be 
observed are scored as either present or absent. Other exceptions to the general trend 
potentially result from the exaggerated effect that correlated features may have when only a few 
traits are available for analysis. For example, an individual who could be scored for fifteen 
features, ten of which are in the spine, may have an abnormally narrow age interval resulting 
from the use of more highly correlated traits. Additional testing using simulated groups of 
features is needed to determine what other factors may be influencing age-interval length and if 
the pattern of decreased interval length with an increasing number of traits, to a point, occurs 
consistently in other samples. 
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Figure 5.16. Comparison of age estimates produced for the Athens sample (N=201) using combined reference 
sample logistic probabilities from different numbers of features.  
 
 

 
 
Figure 5.17. Relationship between the number of features used to estimate age and the length of the interval 
produced using (a) combined or (b) time period-specific trait probabilities and a 95% prediction interval. St. Bride’s 
Crypt sample (N=168)  
 
 
Accuracy and precision  
 
Similar to what was done for the Athens Collection, the accuracy and precision of several 
variations of the new TA procedure are first compared with the performance of standard 
methods. Figure 5.18 compares six variations of the new TA procedure (solid symbols) with 
other commonly used methods (open symbols), and experience-based estimates (asterisk). The 
overall pattern is the same as was seen with modern individuals. Existing methods fall 
somewhere along the continuum from high precision with low accuracy (lower left) to high 
accuracy with low precision (upper right), with existing TA, new TA, and experience-based 
estimates in the middle and slightly offset from this pattern.  
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Minor variations in the pattern of accuracy and precision for standard methods between the two 
collections primarily result from differences in the age distributions of each sample. For 
example, the accuracy of Todd (1920,1921) (open diamond) was shifted from approximately 25 
years in the Athens sample to 45 years in this application with a corresponding increase in 
accuracy. This is because the individuals in the St. Bride’s sample who were scored for this 
feature have an older age distribution than those that could be scored in the Athens collection. 
Therefore, a greater number of individuals fell into the terminal 50+ years age category, which 
resulted in a higher average age-interval length. Another factor contributing to minor differences 
between the results of the two samples is the smaller number of individuals that could be scored 
using some of the techniques because of postmortem damage (see Figure 5.14).  
 
 

 
 
Figure 5.18. Accuracy and precision of age estimates generated using new TA procedure variations (dotted box), 
commonly used methods for the pubic symphysis and auricular surface (open symbols), and experience-based 
estimates (asterisk) for the St. Bride’s Crypt sample (N=168). 
 
 
The variations of the new TA procedure (dotted box) perform exactly as anticipated based on 
the previous tests using modern individuals. The accuracy and precision produced for the St. 
Bride’s sample using logistic probabilities for 30 and 40 traits is highly similar to the same 
method variations in the Athens sample. This can been seen by comparing the results 
presented in Figure 5.9 with those in Figure 5.18. As in the Athens sample, using 30 features 
produces slightly higher accuracy that using all 40 possible traits, but this effect is not as 
marked as was with the modern, well-preserved individuals. This is likely because many 
individuals in the St. Bride’s sample are incomplete. Allowing for a maximum of forty features 
increases the average number of features per individual that are used while rarely actually 
including that number (see Figure 5.15).   
 
 
 
 



	
   94 

For both the Athens and St. Bride’s samples, using reference data from the entire Phase 1 
sample results in slightly better age estimates overall than those produced using time period 
specific trait probabilities. However, there is a potentially interesting deviation in the results 
obtained when applying probabilities from both death cohorts to each sample. In the Athens 
sample of modern individuals, using probabilities from death cohort 2 (post-1981) slightly 
reduces the overall accuracy, but produces very similar results to using the combined reference 
sample. Using death cohort 1 (pre-1953), however, resulted in the highly unusual combination 
of wider age intervals with a decrease in accuracy. In the St. Bride’s sample, the use of either 
death cohort produces slightly lower accuracy than using the combined sample, but neither 
death cohort shows the dramatic decrease in accuracy seen in the Athens sample.  
 
This is potentially the result of at least two inter-related factors. First, the size of each of the 
death cohorts is necessarily smaller than that of the combined sample. These sample size 
differences produce slight variations in the probabilities produced for each trait (Appendix B), 
which will have a different overall effect on the performance of the method on a sample 
depending on the underlying age structure of that sample. Second, many of the skeletons in St. 
Bride’s sample are incomplete and, typically, the use of fewer traits results in a wider age 
interval with correspondingly higher accuracy. This could mean that regardless of the reference 
sample used—death cohort 1 or death cohort 2—a significant number of the log-likelihood 
functions for the individuals in the St. Bride’s sample are so wide that they cannot help but be 
accurate because they are based only on a few features.  
 
The high frequency of remains that are at least partially damaged in the St. Bride’s sample also 
creates variability in the age intervals produced for standard methods, including existing TA, and 
the new TA procedure. In Figure 5.19, each individual in the sample is represented by a black 
dot with the estimated age range and point estimate as grey lines. As discussed for the Athens 
sample, this presentation illustrates the typical relationship between precision and accuracy. In 
this case, the variability introduced by partial remains can also be seen by the wide age ranges 
that appear erratically throughout adulthood, particularly for existing TA (top right) and new TA 
(bottom row). If this figure is compared to the similar figure produced for the much more 
complete individuals of the Athens Collection (Figure 5.13) the effect of sample preservation on 
the age ranges produced using each method becomes even more clear.   
 
Point estimates and age-estimation bias 
 
Figure 5.18 demonstrates that the overall accuracy and precision of new TA in the St. Bride’s 
sample is similar to that obtained using a well-preserved modern sample, while Figure 5.19 
shows that the overall patterns for the entire adult lifespan are similar. Both issues are critical to 
understanding how each method can be expected to perform when applied to different sample. 
For forensic applications, the point age-at-death estimate is less important than the age range 
and its associated level of confidence. However, for archaeological applications, the 
performance of the point estimates, including their error and bias across the lifespan, is of 
particular importance. Although it is not a statistically or theoretically advanced technique, these 
estimates are, by far, the most frequently used way to generate population age-at-death 
distributions from archaeological data (Hoppa & Saunders, 1998; Jackes, 2000).   
 
In Figure 5.20, the point estimates of age (means, midpoints, or maximum likelihoods) produced 
by the best-performing standard methods (Brooks and Suchey 1990, Buckberry and 
Chamberlain 2002), existing TA, observer experience, and new TA are compared to the known 
ages-at-death for the same individuals. The identity line (solid line) and fitted linear regression 
through the origin (dotted line) are provided to facilitate comparisons between the methods. The 
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overall patterns in the estimates obtained for the St. Bride’s sample for each method are 
essentially identical to those obtained for the Athens sample using the same techniques. The 
point estimates produced by standard methods (top row) show a general increase with age, but 
are a poor fit for either the identity line or the fitted regression. Existing TA (middle row) allows 
age to be estimated for more of the adult lifespan, but produces a large scatter of points when 
used with incomplete remains and collectively underestimates age. The new TA procedure 
(bottom row) performs as expected based on previous tests, with one discrepancy. A greater 
number of individuals in the St. Bride's sample were estimated as having ages at the extremes 
of the distribution—15 and 105 years—than in tests with the Athens sample. These individuals 
appear as a line of dots at the top and bottom of the new TA graphs in Figure 5.20.  
 
Two explanations are probably needed—one for the number of individuals estimated as 15, and 
the other for the people at age 105. The use of partial remains likely has a strong influence on 
both. First, as discussed for the Athens sample, the group of individuals aged near the 
maximum limit is partly an artifact of the use of a uniform prior distribution where it is assumed 
that a skeleton is equally likely to be any age in the adult lifespan. Any individual with many “old-
age traits”—features with transitions in the eighties, nineties, and above—will be estimated to be 
in the far upper extent of the lifespan, even though it would be far more likely in any population 
to find an 80-year-old with those scores than a 100-year-old individual. This problem is 
exacerbated in incomplete individuals because it becomes more likely that all or many of the 
traits in older individuals will be scored as "present" when there are fewer features for analysis.  
 
Second, two plausible explanations exist for the overestimation of individuals as 15 years of 
age—one theoretical and one practical. It is possible individuals under the age of 30 years in the 
St. Bride’s sample may be slightly delayed in their development relative to the individuals in the 
Phase 1 reference sample. This would result in a greater number of individuals having all young 
trait scores and being placed in the youngest age category. However, if this explanation were 
the most likely, it is reasonable to assume that the ages produced using probabilities from the 
two different death cohorts would result in different numbers of individuals estimated to be in the 
youngest age category, which did not occur. The use of either death cohort, or the combined 
sample, produces the same anomalies at the youngest and oldest ages. Although this is not 
definitive evidence that differences in the timing of age-related changes do not exist between 
the samples, particularly considering the low number of young individuals in death cohort 1, it 
indicates that other factors may be preliminary responsible in this case.  
 
Because this effect at the youngest ages is not seen in the Athens sample and does not change 
with the reference sample used, it is likely that the fragmentary nature of the remains and the 
particular mix of traits available in each individual are primarily responsible. As for older 
individuals, when fewer traits are available for analysis it becomes more likely that all of the 
binary features will fall into a single category, which results the youngest possible estimated 
age. This effect is greater for young individuals because there are currently very few features 
with transitions at the youngest ages in the new TA procedure. This is because the focus of this 
work was to identify features to improve estimates in middle and old age and to demonstrate the 
utility of new skeletal features independent of information from traditional indicators. This means 
that the young-age features of the pelvic joints that work well in traditional methods for 
individuals under the age of 40 were not included in these estimates. The NIJ team has made 
changes to the pubic symphysis and auricular surface features from existing TA, and they will 
be included in the final version of the new TA method. The inclusion of these features, in 
addition to new NIJ-defined traits in other parts of the skeleton with transitions in young 
adulthood, should resolve the age-estimation issue for young adults.  
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Figure 5.19. Comparison of the age ranges produced by an experienced observer, existing TA, several standard 
methods, and two variations of the new TA procedure for the St. Bride’s Crypt sample (N=168). Black dots indicate 
the known age of each individual and grey lines indicate the range estimated by each method.  
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Figure 5.20 Ages estimates produced for the St. Bride’s sample (N=168) by two commonly used methods (Buckberry 
& Chamberlain, 2002) an experienced observer, existing TA (middle row), and two variations of the new TA 
procedure using logistic regression probabilities for different numbers of features (bottom row). The identity line (solid 
line) and regression fitted through the origin (dotted line) are shown for comparison.  
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Point estimates and age-at-death distributions  
 
The final element needed to evaluate the potential performance of standard methods and new 
TA for archaeological applications is the age-at-death distributions that result from grouping 
point age estimates into age categories. Each panel of Figure 5.21 shows the documented age-
at-death distribution (solid line) for individuals in the St. Bride’s sample overlaid with distribution 
of estimated ages (dashed line) produced using each method.  
 
 

 
 
Figure 5.21 Known (solid line) and estimated (dashed line) age-at-death distributions for the St. Bride’s crypt sample 
produced using standard techniques (left column), existing TA, observer experience, and new TA.  
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Based on these results, it is not difficult to see how using the (a) Suchey-Brooks pubic 
symphysis or (b) Lovejoy et al. auricular surface methods would result in an archaeological age-
at-death distribution with few individuals living beyond around 60 years of age (e.g., Bullock et 
al., 2013; Nagaoka & Hirata, 2008). The Buckberry-Chamberlain technique (c), also based on 
the auricular surface, produces a slightly different pattern with too few individuals under the age 
of 40 and too many between 50 and 80. This is potentially why a number of studies have found 
this method to be most appropriate for samples of older individuals (e.g., Hens & Belcastro, 
2012; Nagaoka & Hirata, 2008; San Millán, Rissech, & Turbón, 2013). These findings also 
support the long-discussed idea that the oddities observed in many archaeological age-at-death 
distributions, particularly the large number of people dying in middle age, are the result of the 
peculiarities of the methods used and do not reflect the true features of the mortality sample 
(Bocquet-Appel & Masset, 1982; Howell, 1982; Konigsberg & Frankenberg, 1992).  
 
Regardless of the reason, it is clear that the age distributions produced using the traditional 
procedures evaluated here do not adequately represent the true age distribution of the St. 
Bride’s sample (Figure 5.21). The age-at-death distribution produced using estimates from 
existing TA, however, shows that there is hope. By scoring features of the pubic symphysis and 
auricular surface as individual components and combining them in a different statistical 
framework based on a reasonably large sample, the correspondence between the estimated 
and known age distribution improves dramatically; however, despite this improvement, existing 
TA is not free from age-estimation bias. The slight over- and under-estimation of age before and 
after around age 50 respectively can be seen in the estimated age distribution (dashed line) 
relative to the true distribution (solid line) in the fourth row of Figure 5.21. As previously 
discussed, this is primarily the result of the method's reliance on cranial and pelvic features 
where morphological change fails to keep pace with chronological age after around age 50 
(Milner & Boldsen, 2012c). 
 
The new TA method takes the statistical framework of existing TA, excluding the correction for 
correlated features, and improves its performance with a suite of new traits. Although the new 
TA method overestimates the number of individuals in the very youngest and oldest age 
categories, if these same spikes are seen in archaeological samples, it can be assumed that the 
same processes are at work. This assumption can be verified in the youngest ages by 
crosschecking the ages produced for the youngest category with the overall pattern of skeletal 
development for these individuals. The new TA procedure does not include the majority of sites 
of epiphyseal fusion because most provide information only for children and teenagers, and 
would therefore contribute little to an adult age-estimation method. These overall pattern of 
development and age-at-fusion for these sites is, however, relatively well documented and can 
be used to assess the number of individuals in the archaeological sample that likely fall between 
15 and 20 years of age.  
 
In the oldest ages, observer experience is used to assess the plausibility of the age estimates. 
Although experience is not a scientifically valid technique because the uncertainly of the 
estimates cannot be quantified for any particular case, in these investigations of the new TA 
procedure it has been shown to be a reliable tool for estimating age in multiple samples. 
Because the age-at-death distribution produced using experience most closely matches that of 
the known distribution, it is used to help understand the performance of the new TA technique 
and assess possible sources of error, such as missing data, taphonomic modifications of bone 
texture, disease processes, and individuals where the documentation may not match the 
remains. Ultimately, it is hoped that the addition of new features to this procedure will result in a 
method that reproduces or exceeds what can be done by a highly trained observer.  
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Phase 4: An Archaeological Application of the New TA Procedure  
 
Taken together, these results provide strong support for the efficacy of new TA in archaeological 
contexts. Applying the new method to the St. Bride’s sample allowed between thirty and fifty 
percent more of the sample to be aged compared to using standard methods for the pubic 
symphysis or auricular surface alone. Approximately the same number of individuals were 
assessed as with the existing TA method, which is based only on cranial sutures and pelvic 
joints, but with greater accuracy, higher precision, and less bias. The use of probabilities from 
time-specific reference samples had no significant affect on the accuracy or precision of the 
method and a combined reference sample produced the best results. Although using a uniform 
prior distribution resulted in an unrealistic number of individuals in the oldest age categories, the 
overall age-at-death distribution generated using five-year age categories was a good 
approximation of the true sample distribution.  
 
In Phase 4, the new TA procedure is applied to two contextually well-documented Danish 
archaeological samples—Ole Worms Gade (1100–1500 CE) and Klosterkirke (1500–1800 CE). 
Individuals from these samples are evaluated using standard age-estimation methods, existing 
TA, and new TA. Data from the St. Bride’s sample are used to evaluate the appropriateness of 
these methods for generating morality distributions from archaeological samples. This 
application demonstrates the degree to which the use of different age estimation techniques and 
methods of modeling age distributions potentially impacts the conclusions drawn from 
archaeological data and the extent to which existing samples should be re-evaluated based on 
these findings.  
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CHAPTER 6: PHASE 4—ARCHAEOLOGICAL APPLICATION: THE DANISH CITY 
OF HORSENS IN THE LATE MEDIEVAL & EARLY MODERN PERIOD 
 
 
Skeletons, archaeological artifacts, and written records provide three overlapping sources of 
evidence for the reconstruction of population histories (Cannon, 1995; W. Petersen et al., 
1975). Because no single source is without gaps or biases, multiples lines of evidence are 
needed to identify and mitigate individual shortcomings (Cannon, 1995; D. Ubelaker, 1995). In 
the late medieval period in Europe, the number of written and pictorial sources describing the 
functions of towns dramatically increased (H. Anderson, 2007), including law codes and 
privileges, records of meetings of town governments, tax registers, customs accounts, deeds, 
and assorted other documents (Dahlbäck, 2008). These sources can complement 
archaeological data in investigations of social and demographic patterns (H. Anderson, 2007).  
 
During the Middle Ages, the number of towns grew rapidly, although they remained small, and, 
by the fourteenth century, Denmark was the most densely urbanized of the Scandinavian 
countries (Benedictow, 2008; Dahlbäck, 2008). This growth was soon halted, however, by a 
period of unusual cold that resulted in food shortages, which were soon exacerbated by 
outbreaks of plague (H. Anderson, 2007). No towns were founded in Denmark in the first half 
of the fourteenth century (H. Anderson, 2007). After the massive depopulation of the Black 
Death starting around 1350 CE and lasting to ca. 1500, a general pattern of accelerated urban 
growth emerged that has continued to today (Johansen, 2002).  
 
The expansion of cities could be related to an influx of individuals into urban areas, particularly 
young-adult males and couples, increases in life expectancy, or a combination of both. 
Although few written sources can shed light on internal migrations during this transition period 
(Johansen, 2002), a combination of plague epidemics, cooler climates, changes in land 
ownership and management practices and political unrest undoubtedly contributed to these 
migration patterns that shaped the country as it is today (H. Anderson, 2007; Gissel, 1981; 
Vahtola, 2003). Increased mobility, dietary changes, and reduced disease load, along with 
other factors, substantially contributed to the shifting demographic patterns between the late 
Middle Ages and Early Modern period (Orrman, 2016; Sogner, 2016) . 
 
Medieval demography can generally be characterized as having high birth rates and high death 
rates, with as many as half the children dying before age seven and very few individuals living 
over the age of 60 (Vahtola, 2003). Historical records indicate that mean life expectancy at 
birth in the Middle Ages was between 18-23 years at birth, or 15-18 years from age 20, and 
had increased to between 30 and 40 years at birth by the Early Modern period, with females 
dying slightly earlier in both cases (Johansen, 2002; Vahtola, 2003). Similarly, Benedictow 
(2008) gives a mean life expectancy at birth between 20 and 25 years in the Middle Ages that 
increased to around 35 years by the mid-eighteenth century. This implies substantial changes 
to the demographic structure of the population between medieval to early modern society 
(Benedictow, 2008). It is debated, however, whether increases in fertility or declines in adult 
mortality played the biggest role in the rapid growth (Benedictow, 2008; Livi-Bacci, 2012) 
Skeletons are an important source for evaluating reconstructions based on documentary 
sources (Walker, 1995), and may be able to help shed light on complex demographic changes.  
 
Unfortunately, the extensive literature investigating standard age-estimation techniques (see 
Appendix A) indicates that the application of these methods to archaeological samples would 
almost certainly yield biased results. This is further supported by the results presented in 
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Chapter 5 of this dissertation. Using existing techniques, it is likely that changes in life 
expectancy could not be detected because age ranges for individual skeletons are large, often 
thirty to fifty years or more, and all individuals over 50 are lumped into a single category. Any 
real demographic shifts would be further masked by the errors introduced by assigning 
individuals to age categories using methods that have been repeatedly shown to have low 
accuracy and systematic age-estimation bias.  
 
The focus of this phase is to evaluate the performance of commonly used age-estimation 
techniques, including existing TA, compared to the results produced by the new TA procedure. 
Information from the exploratory tests conducted with known-age samples in Phase 3 will be 
used to interpret the results of these applications. The more precise and collectively unbiased 
age estimates produced by the new TA method should allow differences to be detected in the 
age-at-death distributions of the two samples, if they indeed exist. Contextual information 
about the two sites and their excavations is used to identify potential sources of bias in the 
sample to aid in the interpretation of differences in the mortality profiles, which may cause them 
to differ from historical sources, even with adequate age estimates (Saunders et al., 1992). 
 
Phase 4 Samples  
 
In this phase, two samples were selected to represent the Middle Ages and Early Modern 
period in Denmark where we would expect to see changes in mortality profiles based on 
historical documentation—Ole Worms Gade (Ole Worms Street) and Klosterkirke (Monastery 
Church). Importantly, these sites were located less than 1 km apart (Figure 6.0), so an 
assumption can be made about the genetic and cultural similarity of the populations that 
contributed to the two samples. Both samples are also sufficiently large enough to provide 
adequate samples of individuals that can be assessed using standard methods, existing TA, 
and new TA, so that reasonable mortality distributions can be produced.  
 
Table 6.0 summarizes key information about the Ole Worms Gade and Klosterkirke samples 
used in this phase. All individuals from each site, with the exception of several on long-term 
loan to other institutions at the time of data collection, were evaluated.32 Any individual that was 
estimated to be 16 years or older based on dental development and the overall pattern of 
epiphyseal fusion in the skeleton was included in the sample.33 In a small number of cases, 
sets of remains were excluded from the sample because they appeared to contain elements 
from two or more individuals. In cases where commingling was suspected, the original 
excavation and skeletal analysis records were consulted before making the decision to exclude 
the individual. Bones that were not found in the context of a primary burial (i.e., loose finds) 
were not analyzed because of the inaccuracy in age estimates based on only a handful of 
features and the potential for duplicating individuals in the final sample.  
 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
32 Seven individuals were on loan and therefore unavailable for analysis. According to the osteology report for the 
collection, two were children under the age of 13, and five were adults spaced out between 24 and 57 years of age 
based on experience-based estimates. 
33 Juveniles will not be considered in this application. However, individuals under the age of 16 were assessed to 
verify the age assigned during the original osteological analysis of the sample by ADBOU staff. These data are 
available for future work.   
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Figure 6.0. Location of Phase 4 archaeological samples from Horsens, Denmark at different scales: (a) Northern 
Europe and Scandinavia, (b) Denmark, (c) city of Horsens, and (d) approximate excavation locations. The rectangular 
box on each map (a-c) indicate the area enlarged in the next frame. In frame (d), the highlighted areas are the two 
sites—(1) Klosterkirke and (2) Ole Worms Gade. The trapezoidal box near (2) indicates the likely extent of non-
excavated portion of the cemetery. Maps modified from (Google, 2016). 
 
 

Table 6.0. Archaeological collections used in Phase 4 

Collection 
Years  
of Use 

Majority of 
Burials N M F Unknown 

Ole Worms Gade (HOM 1649) 1100 - 1536 1350 - 1536 317 158 129 30 

Klosterkirke (HOM 1272) 1536 - 1856 1750 - 1800 166 85 78 3 
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HOM 1649—Ole Worms Gade (Ole Worms Street) 
 
Archaeological excavations at Ole Worms Gade took place between 2007 and 2009 after 
skeletal remains were discovered during construction related to water and sewer lines 
(Klemensen, 2009). Only the portion of the cemetery under the modern road was excavated; 
however, based on reports of other archaeological remains found in the area, the cemetery 
likely extends slightly westward along a road shown in maps from the Middle Ages, and east at 
least one modern block under apartments and other buildings. The full extent of the cemetery 
area is estimated to be around 9,400m2, of which only approximately 580m2 were excavated 
(Klemensen, 2009). Figure 6.0, panel d(2), shows the location of the excavated area (red 
shaded area) and the likely extent of the cemetery (black outline).  
 
The Old Worms Street cemetery was in use since the twelfth century, but essentially all the 
burials date between 1350 and 1536 CE. In total, there are 401 individuals from primary 
burial contexts—278 adults (16 years or older) and 132 children (Pedersen & Boldsen, 2010). 
Only the area under the road could be excavated, so more than 55% of the individuals in the 
sample are represented by a third or less of a skeleton34 (Pedersen & Boldsen, 2010). In 
addition to constraints imposed by street and surrounding buildings, at least a third of area 
under the street had been disturbed over the previous century by the installation of sewer, 
water, and gas lines, as well as at least two sets of heating pipes (Klemensen, 2009). Although 
more than 75% of the sample is listed as in good or excellent condition, many sets of remains 
contain only a few well-preserved bones.  
 
HOM 1272—Horsens Klosterkirke (Monastery Church) 
 
Excavations at the Klosterkirke site took place between November 2006 and March 2008 
(Tarp & Boldsen, 2010). The site is named because of its close proximity to a Franciscan 
monastery that was likely demolished in the late 1500s (C. G. Petersen, 2007). Burials at the 
site began in 1536, but by 1825 the area had become so crowded that it could no longer 
handle the deaths of a growing city. In 1835 a new cemetery was founded in another location 
and the Klosterkirke cemetery was abandoned several decades later (C. G. Petersen, 2007). 
Although the site was officially in use between 1536 and 1856, the majority of excavated 
burials are believed to be from the second half of the eighteenth century (Tarp & Boldsen, 
2010). The site contained 221 primary burials, including 178 individuals who were 16 years of 
age or older35 (Tarp, 2010). Approximately three-quarters of the sample is listed as being 
either moderately or well preserved with, on average, about half of each skeleton present 
(Tarp & Boldsen, 2010). Of these, 166 individuals were available at the time of data collection 
and were suitable for analysis.36  
 
 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
34 The remaining portions of which remain in situ under the edges of the excavation area or in inaccessible areas of 
the site, such as under existing pipes.  
35 The age of individuals in primary burials was assessed using epiphyseal fusion, dental development, the cranial 
sutures, pubic symphysis, and auricular surface, as well as additional features of the femur. Each individual was 
assigned an age range. If the midpoint of this range was 16 years or older, the skeleton was considered to be an 
adult (Tarp & Boldsen, 2010). 
36 Eight individuals were on loan to another institution at the time of data collection and were unavailable for analysis. 
Several skeletons were not included in the sample because of possible commingling of remains.  
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Methodological Considerations  
 
Traits to include 
 
Tests with the Athens sample in Phase 3 indicate that using a reduced sample of 30 features, 
rather than all 40 traits, improved the compromise between accuracy and precision and slightly 
reduced the collective bias of the estimates. Using a smaller group of 21 or 14 traits also 
produced essentially unbiased results, but increased the variability in the point estimates.37 In 
well-documented samples, the issue of how many features to include in an age estimate is, at 
this point, simply an interesting exercise. For archaeological investigations, however, this issue 
has potentially serious implications for the use of the method because skeletons are often 
incomplete. Artificially restricting the number of features used may result in a substantial loss of 
data and introduce additional biases into the sample.  
 
In both of the Phase 4 samples, more than 50% of the individuals are represented by less than 
a third of the skeleton, while another 25% have less than two-thirds of the skeleton (Pedersen 
& Boldsen, 2010; Tarp & Boldsen, 2010). Figure 6.1 shows the number of new TA features 
used to estimate age for the individuals in each archaeological sample when either all 40 or a 
subgroup of 30 traits were allowed as possible scores. In these samples, using the 40 features 
results in a greater number of individuals with more traits that can contribute to age estimates 
(Figure 6.1, dark grey bars with lines). In this situation, the benefits of using a large suite of 
features, outweigh the possible drawbacks of including too many. Particularly because only a 
single individual out of all 485 could be scored for all 40 traits and over 90% of each sample 
could be scored for fewer than 30 of the 40 possible features.  
 
 

 
 
Figure 6.1. Distribution of the number of features available for estimating age for the individuals in each sample—(a) 
HOM 1649: Ole Worms Gade (N=317) and (b) HOM 1272: Klosterkirke (N=168)—when either 30 or 40 traits were 
possible. Note the difference in the y-scale between the two charts.  
 
 
 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
37 These results were summarized in Figures 5.9 and 5.12 in the previous chapter.	
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The differences in the distribution of the number of traits present between the samples result 
from the distribution of the new TA features in the skeleton combined with differences in the 
sites themselves. The Ole Worms Gade sample (Figure 6.1, a) has a much larger number of 
individuals with fewer than five features present. Unfortunately, despite significant effort to 
select features to represent the entire skeleton, there are currently only a small number of new 
TA features from the knee down. Because of the orientation of individual of these individuals 
under the road surface, a substantive portion of the sample is represented only by lower limbs 
or isolated feet. In contrast, in the Klosterkirke sample (Figure 6.1, b), the distribution of 
features present represents the more random loss of bones that results from the long-term use 
of a small area for many burials. Although graves could be excavated in their entirety, over 
many years newer burials were laid on top of and cut into older ones, which resulted in a large 
number of loose and commingled remains in the grave fill that could not be scored.  
 
The effect of too few traits  
 
In Phase 3, it was demonstrated that Getz's experience-based estimates have a strong and 
unbiased correlation with documented age in both the St. Bride’s and Athens samples. 
Although, at this time38, expert age assessments estimates cannot be used in a formalized way 
to evaluate samples, they are used in this section to assess whether the new TA procedure is 
functioning in a similar way in both the known-age and archaeological samples. Of the two 
archaeological samples evaluated in this phase, Klosterkirke is likely the most similar to the 
known-age individuals from St. Bride’s crypt assessed in the previous chapter. Although not an 
exact match, the two samples contain individuals of similar ancestry who lived in an urban 
environment in northern Europe during the same time period. Therefore, comparisons of these 
two samples—one with documented ages and one where they are unknown—are first used to 
test the efficacy of the new procedure. 
 
Figure 6.2 compares experience-based estimates to the maximum likelihood estimates 
produced by new TA using the logistic trait probabilities of 40 features from the full Phase 1 
reference sample (i.e, one logistic model fitted per trait to a combined sample of all males and 
females from both death cohorts) for the St. Brides and Klosterkirke samples. The two panels 
for each sample show the same age estimates but individuals who were aged using fewer than 
five or fifteen features are shown in red. In the St. Bride’s sample (Figure 6.2, top row), only a 
single individual had fewer than five features present. Removing individuals with fewer than 
fifteen features would eliminate several outliers, but would also eliminate some individuals 
where age could be reasonably estimated. Excluding individuals based on this cutoff would not 
substantially improve the performance of the method at the sample level.  
 
Age estimates for the archaeological Klosterkirke sample (HOM 1272) (Figure 6.2, bottom row) 
show similar patterns, although more individuals fall into both the under-five and under-fifteen 
trait thresholds because many of the skeletons are incomplete. Removing individuals in both 
categories would mitigate problems seen at both the youngest and oldest ages. However, 
eliminating all individuals with fewer than fifteen features would effectively cut the sample size 
in half (see Figure 6.1) and remove a large number of individuals that appear to be aged 
effectively using the new procedure. For these reasons, both archaeological samples are 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
38 A procedure known as Calibrated Expert Inference (CEI) that integrates experience-based estimates into a 
statically valid age-estimation procedure has been under development by other members of the research team for 
many years (Boldsen, 2009; Weise, Boldsen, Gampe, & Milner, 2012). This procedure, however, requires each user 
to produce a sample of experience-based age estimates from a known-age skeletal sample, which are then 
operationalized into a user-specific version of the method. Therefore, this technique is not practical for the majority of 
the field.  
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analyzed here using the full set of 40 possible features. Any individual with fewer than five 
traits present will be removed from the sample used to construct mortality distributions.  
 
One difference in Figure 6.2 that should be addressed between the estimates of the St. Bride's 
and HOM 1272 samples is that a greater number of archaeological individuals (lower row) fall 
above the identify line. A linear regression fit through the origin for these data would have a 
steeper slope than for the historical sample (top row). Although individuals of the HOM 1272 
sample could potentially be aging "faster" than those from St. Bride's (i.e, older traits appearing 
at younger ages), there are other potential explanations similar to those discussed in Chapter 5 
regarding differences between the Athens and St. Bride's samples. The tendency for the 
uniform prior distribution to result in overestimates of age in the upper half of the lifespan, 
paired with fewer traits present for analysis, may be contributing to this pattern. Slight 
underestimations of age at the upper end of the age distribution in the experience-based 
estimates, which more often occur when few traits are available, could magnify this effect. 
 
 

 
 
Figure 6.2. Getz experience-based estimates compared to maximum likelihood estimates generated from logistic trait 
probabilities for a maximum of 40 features for the St. Bride’s sample (N=168) and Klosterkirke (HOM 1272, N=166). 
The same data are shown in the panels for each sample; estimates produced using fewer than 5 or 15 features are 
shown in red.  
Preservation of commonly used adult age indicators 
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As with the traits used for the new TA method, the preservation of commonly used age 
indicators is a potential biasing factor in any skeletal analysis. Figure 6.3 shows the percentage 
of each archaeological sample that could be aged using each method. As was seen in the St. 
Bride’s crypt sample, the pubic symphysis was less well preserved than the auricular surface in 
both sets of archaeological remains. Although the pubic symphysis is the most widely used 
adult age indicator, and considered by many to provide the most accurate age estimates, it is 
rarely preserved in archaeological samples (M. Cox, 2000; Falys & Lewis, 2011; Garvin & 
Passalacqua, 2012). This is not entirely unexpected because the pubic symphysis has 
relatively thin cortical bone, paired with an anterior position in the skeleton, which makes the 
area particularly prone to weathering and other postmortem damage (M. Cox, 2000).  
 
 

 
 
Figure 6.3. Percentage of the HOM 1649 (Ole Worms Gade, N=317) and HOM 1272 (Klosterkirke, N=166) samples 
that could be aged using methods for the pubic symphysis (Suchey-Brooks), auricular surface (Lovejoy and B&C), 
and those that use features from multiple skeletal elements (experience, existing TA, and new TA).  
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The performance of standard age indicators on past populations  
 
It is commonly believed that rates of aging in skeletal indicators in the past may be different 
than they are in modern populations, although whether the change is faster, slower, or perhaps 
simply obscured by excessive “wear and tear” on the skeleton is debated (Chamberlain, 2006; 
Milner et al., 2008; Molleson, 1995). Therefore, before applying standard age-estimation 
methods to the archaeological samples, whether the relationship between traditional methods 
and experienced-based estimates is the same in both the historical and archaeological 
samples is explored. As previously noted, although experience-based estimates cannot 
provide quantitative measures of uncertainty, they have been shown to be unbiased and highly 
correlated with documented age in more than a half-dozen skeletal samples. Figure 6.4 shows 
the relationship between experience-based estimates of age and the ranges produced for two 
standard methods, existing TA, and the new TA procedure using 40 features. Although the 
archaeological sample (Figure 6.4, right column) has many fewer individuals who could be 
scored using standard techniques, the overall relationship to the experience-based age 
estimates, as well as the patterns inherent to each method are the same in both samples. The 
increase in variation—longer and more variable range lengths—seen in the existing and new 
TA methods for the archaeological sample is the result of poorer preservation compared to the 
individuals in St. Bride’s crypt.  
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Figure 6.4. Comparison of the age ranges produced by the two best-performing standard methods for the pubic 
symphysis and auricular surface, existing TA, and the new TA procedure using 40 features for the documented St. 
Bride’s sample and the Klosterkirke archaeological sample. Black dots in each graph show Getz experience-based 
estimates, while the grey lines indicate the range estimated for these individuals by each method. 
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Standard Methods & Implications for Paleodemographic Applications 
 
As previously discussed, for paleodemographic analyses, whether the data adequately 
represent the sample is a fundamentally different problem than if the sample can be used to 
investigate the population. Although both questions are critical to the results and interpretations 
of archaeological investigations, if the input data are an inadequate representation of the 
sample, the application of any statistical analysis or modeling technique to generate 
information about the population will produce meaningless results. Therefore, the remainder of 
this dissertation focuses on the issue of whether data from any of the techniques investigated 
can produce results suitable for more sophisticated analyses.  
 
Three standard age-estimation methods 
 
This phase focuses on three of the most commonly used procedures applied to archaeological 
data—Suchey-Brooks for the pubic symphysis and Lovejoy et al. and Buckberry-Chamberlain 
for the auricular surface (Falys & Lewis, 2011; Garvin & Passalacqua, 2012). Although a variety 
of other techniques could be evaluated in a similar fashion, these were selected to be 
representative of the types of methods that are currently in use. Furthermore, their extensive 
use for bioarchaeological and paleodemographic investigations, particularly for the Suchey-
Brooks and Lovejoy procedures, makes the critical evaluation of these techniques using 
modern, historical, and archaeological samples all the more meaningful.   
 
The six-phase Suchey-Brooks method (see Figure 2.0) is based on a sample of 1,225 pubic 
symphyses collected from autopsies in Los Angeles (Brooks & Suchey, 1990). The authors 
state that this diverse sample should represent the variation found in prehistoric populations39 
and that “for prehistoric reconstruction there is no legal framework and age identification can 
focus on the mean values,” (Brooks & Suchey, 1990, p. 237). Additionally, the method should 
be useful in archaeological contexts because the pubic symphysis is relatively often preserved 
and the mean values for each for the six stages are similar for males and females, which may 
simply the construction of mortality profiles (Brooks & Suchey, 1990). 
 
The Lovejoy et al. (1985) eight-phase auricular surface technique is also based on a large 
sample of 500 known-age skeletons from the Todd Collection, several forensic cases, and 250 
prehistoric individuals, which were presumably used to investigate the range of variation seen 
in the feature in archaeological skeletons. The authors state that the auricular surface 
produces age-at-death estimates that are similar in accuracy to those produced by the pubic 
symphysis, but that are significantly more useful because the features often better preserved 
(Lovejoy, Meindl, Pryzbeck, et al., 1985).   
 
The Buckberry and Chamberlain (2002) method is based on the features of the Lovejoy et al. 
(1985) method, but is fundamentally different from that method in several respects. First, the 
features are scored as components, rather than in phases, which allows partial remains to be 
scored, as well as results in a greater number of possible age estimates. Secondly, the sample 
used to develop the method was a small group of individuals from the Spitalfields Collection 
(N=180)—a historical collection formed from individuals who lived contemporaneously in 
London with the individuals in St. Bride’s crypt. Therefore, based on the idea that population-
specific methods may produce better results, the performance of this method can be compared 
between the St. Bride’s crypt sample and the other samples composed of individuals who lived 
substantially different lives than those from nineteenth century London.  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
39 This view is in line with the conservative approach advocated by the research team.  
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These methods were applied according to the procedures described in the original 
publications. For consistency the left side was used whenever possible. If the left was unable 
to be scored, the right side was substituted. In cases where the pubic symphysis or auricular 
surface was only slightly damaged, multiple scores were assigned, the ranges were combined, 
and the points of central tendency were averaged. As mentioned in Chapter 5, the mean age 
estimates from the stages of existing age-estimation methods are the most frequently used data 
for generating population age-at-death distributions from archaeological data (Hoppa & 
Saunders, 1998; Jackes, 2000). 
 
First, the mortality distributions produced by each method for the St. Bride's sample are 
compared to the known age-at-death distribution of the same individuals (Figure 6.5, top row). 
The estimated distribution for St. Bride’s sample is then compared to the distribution estimated 
from the Klosterkirke (HOM 1272) archaeological sample (Figure 6.5, bottom row). To 
standardize this comparison across methods and samples, the individuals in each five-year 
age category are represented as a percent of the entire sample. The overall shape of the 
distributions is the most important feature in these comparisons. None of the age-at-death 
distributions generated using traditional methods successfully approximate the known age 
distribution of the St. Bride’s sample (top row), nor do they resemble each other. Surprisingly, 
however, the distributions estimated for the St. Bride’s and archaeological samples are almost 
identical for each method (Figure 6.5, bottom row). In other words, the mortality distributions 
produced for these samples appear to reflect the method that was used rather than the age 
distribution of the samples. 
 
 

 
 
Figure 6.5. Top row: The documented (solid line) and estimated (dashed line) age-at-death distributions for the St. 
Bride’s sample do not resemble one another. Bottom row: Estimated age distributions for the St. Bride’s and HOM 
1272 (Klosterkirke) samples show similar method-specific patterns.  
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Without knowing that the estimated distribution for the St. Bride’s sample does not approximate 
reality, it would perhaps be tempting to make inferences about the similarities between the two 
groups that resulted in similar mortality profiles. This may be particularly true in this case 
because the two samples lived in similar environments, under similar social conditions, during 
the same time period. This scenario becomes even more likely because researchers often 
favor one method over another and rarely directly compare mortality distributions generated 
from different features independently, such as is done here.  
 
The picture becomes even more troubling when the mortality distributions generated for the 
other archaeological sample (Ole Worms Gade, HOM 1649) and the modern individuals from 
the Athens sample to this comparison (Figure 6.6). Not only are the known differences 
between the mortality profiles of the Athens and St. Bride’s samples (see Figure 5.0) not 
apparent in this comparison, but each method produces an extremely similar age distribution 
for each sample. This pattern is all the more remarkable because of the differences among the 
samples in terms of the diet, health status, and activity level of the individuals who formed 
them, combined with the differences in how the samples were formed and their level of 
preservation. In other words, the tendency of these commonly used procedures to produce 
method-specific patterns seems to be robust, and is not simply the by-product of analyzing four 
nearly identical samples. 
 
 

 
 
Figure 6.6. Comparison of the mortality distributions produced for the Phase 3 know-age samples (Athens and St. 
Bride’s) and Phase 4 archaeological samples (HOM1649 and HOM 1672) based on age-estimates from three 
standard methods. 
 
 
These results support the conclusion from Phase 3 that existing techniques do not, and 
fundamentally cannot, estimate age with sufficient accuracy and precision to produce 
reasonable age-at-death distributions. The clear and consistent method-specific patterns found 
in all four of the samples are consistent with what is reported in the literature. Samples 
assessed using the Suchey-Brooks and Lovejoy et al. techniques show few individuals 
surviving beyond age 60, while the Buckberry-Chamberlain method is said to perform better on 
samples with an older age distribution (Chamberlain, 2006; Falys, Schutkowski, & Weston, 
2006; Hens, Rastelli, & Belcastro, 2008; Nagaoka & Hirata, 2008; Pfeiffer, 1985; San Millán, 
Rissech, & Turbón, 2013). The data in Figure 6.6 also provide strong support for the long-
discussed idea that the oddities seen in many archaeological age-at-death distributions are 
primarily the result of peculiarities in the methods used to evaluate the samples (Bocquet-Appel 
& Masset, 1982; Howell, 1982; Konigsberg & Frankenberg, 1992). 
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Existing TA, New TA, and experienced-based estimates  
 
The Phase 3 validation study strongly indicates that the new TA method is capable of 
producing more realistic mortality distributions than traditional techniques. The mortality 
distributions produced for the St. Bride’s, Athens, and two archaeological samples using 
existing TA, observer experience and new TA are presented in Figure 6.7. Although the 
patterns in this figure are less clear than those of standard methods, it is precisely this 
complexity that provides potentially valuable information.  
 
The overall pattern produced by existing TA is similar to what was seen in the Phase 3 
validation study with age being slightly underestimated before the age of 50 (i.e., a younger 
peak in the age distribution). The peak of adult mortality is slightly older in the experience-
based estimates, which are more similar to those produced by the new TA method than other 
techniques. The differences between experience-based estimates and new TA in this 
comparison are exaggerated because of the previously noted issue of heaping at the ends of 
the age distribution. If these individuals are removed, the similarities between the two 
distributions become more apparent. Most importantly, all three of these methods show some 
indication of differences in the number of individuals who lived beyond 50 years of age in each 
of the samples. These differences were not, and cannot be, detected by standard methods.  
 
 

 
 
Figure 6.7. Comparison of the mortality distributions produced for the two Phase 3 known-age collections (Athens 
and St. Bride’s) and the two Phase 4 archaeological samples (HOM1649 and HOM 1672) using existing TA, Getz 
experience-based estimates, and new TA. 
 
 
Assessing Mortality in the Danish City of Horsens 
 
Based on the analyses presented here and in Phase 3, it appears that, for the first time, there is 
now a method capable of producing statistically valid age estimates for the entire adult lifespan 
using even fragmented remains. Therefore, the final step in this application is to compare the 
mortality profiles produced by the various procedures to assess what they may indicate about 
changes in mortality in the late Middle Ages and Early Modern period. Figure 6.8 compares the 
age-at-death distributions produced for the two Danish archaeological samples (HOM 1649 
and HOM 1272) using the three standard methods discussed above (left column), existing TA, 
experience-based estimates, and the new TA method (right column).  
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Figure 6.8. Age-at-death distributions for the individuals of the Ole Worms Gade (HOM 1649, solid line) and 
Klosterkirke (HOM 1272, dashed line) samples based on estimates from commonly used techniques (left column), 
existing TA, observer experience, and new TA (right column). 
 
 
As previously discussed, the standard methods produce essentially the same age distribution 
for both samples (Figure 6.8, left column). The larger peaks in the age distributions in the 
Klosterkirke sample (HOM 1272, dashed lines) for most methods is simply the result of more 
individuals having the appropriate elements available for analysis; it is the overall shape of the 
distribution that is key to interpreting differences between the samples. The only significant 
deviation between the two samples among the three traditional techniques is that, for Ole 
Worms Gade (HOM 1649, solid line), the Suchey-Brooks technique was able to detect a 
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greater number of individuals under the age of 20. Based on experience-based age 
assessments (Figure 6.8, right middle), this elevation in mortality in young adulthood for the 
earlier of the two sites is a real feature of the sample and not merely an error of the method. 
Any excitement should be tempered, however, by the fact that for individuals in their teens and 
early twenties there are a number of other indicators that provide more precise information 
than the pubic symphysis. So although the method may have detected an important 
demographic difference between the samples, the use of other age indicators in conjunction 
with these data would provide a more precise picture. 
 
Existing TA shows a different pattern for both of samples compared to the traditional methods 
(Figure 6.8, upper right). There is a large spike in mortality in the early forties for the Ole 
Worms Gade sample (solid line), while the pattern for Klosterkirke (dashed line) is similar to 
that of the St. Bride’s sample. A naive interpretation of this difference might be that the 
Klosterkirke sample is more similar to the St. Bride’s sample because the individuals lived 
during the same time period and shared similar cultural and environmental conditions. Upon 
closer inspection, however, an alternative emerges. While slightly more than 40% of the St. 
Bride’s sample had relatively intact pubic symphyses, less than 15% of the individuals from Ole 
Worms Gade had this feature. This places a heavy emphasis in the existing TA estimates on 
the more robust features of the auricular surface, which were originally developed based on 
concepts from the Lovejoy et al. (1985) descriptions. Based on this, it is not perhaps not 
surprising to see a large peak in mortality in the same age range as the Lovejoy et al. method.  
 
By far, the most interesting distributions are those produced using experienced-based 
estimates and the new TA procedure. Although somewhat muddled by the errors at the 
extremes of the distribution, which were discussed in previous sections, the estimates 
produced by new TA show several of the same features as the distribution produced from 
experience-based estimates. Most notably, both distributions show similar peaks in middle-age 
between 35 and 75 years of age and, contrary to what is found using standard procedures, 
many individuals living beyond the age of 50. In Figure 6.8, both experience-based estimates 
(right middle) and new TA (bottom right) also show a slightly older age distribution in the 
Klosterkirke sample (dashed lines).  
 
Producing similar sex-separated age distributions for these archaeological samples results in 
more complex patterns because of the extremely small sample size in each five-year age 
category. Comparisons between the distributions are further hindered by differences in the 
number of males and females in each sample, differences in preservation between the sexes 
and samples, and the heaping of individuals that currently occurs in the youngest and oldest 
age categories. More sophisticated analytical and statistical procedures are necessary to deal 
with these issues to confidently evaluate sex-specific differences in mortality.  
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Conclusions  
 
At a glance, Figure 6.8 reveals significant variations in the data produced by each of the six 
methods evaluated in this application. Based on the vast differences in the mortality 
distributions, there is little doubt that summarizing these data into tables or analyzing them with 
more sophisticated techniques would also produce different results. In this dissertation, the 
application of these methods by a single observer to both modern and historical skeletons prior 
to applying them to archaeological samples provides critical context for the interpretation of the 
age-at-death distributions. Independent of the test data from Phase 3, it would be impossible to 
know which of the distributions was likely to best represent the true age structure of the 
mortality sample.  
 
This first application of the new TA procedure to archaeological samples provides an exciting 
glimpse of possible differences in mortality in the city of Horsens between the late Middle Ages 
and Early Modern period that could not previously be detected. In the distributions based on 
Getz experience and new TA, there was young adult mortality in the Ole Worms Gade sample 
from the late Middle Ages and an increased number of individuals dying at older ages in the 
Klosterkirke sample from the Early Modern period. Although this pattern is precisely what we 
would expect to see based on historical documentation, these results offer only preliminary 
indications of potential differences between these samples. In addition to the error introduced 
into the new TA estimates by using a uniform prior distribution and not including young-age 
features of the pelvic joints, there are indications that the samples from the two sites may not 
be representative of their respective populations. Recall that the Ole Worms Gade sample 
potentially represents less than 10% of the entire cemetery and that fewer than half of these 
individuals could be evaluated using any of the methods, including new TA. 
 
When the additional reference data collected as part of the NIJ project are available, new 
mortality profiles will be produced for both of the archaeological samples using a larger suite of 
traits. This should increase the sample size avilable for analysis, as well as provide more 
accurate estimates for the individuals already assessed in this application. The new features 
added as part of the NIJ project, combined with additional statistical improvements to the 
preliminary TA procedure, may also help to resolve the age-estimation issues at the extreme 
ends of the age distribution. It is hoped that with larger sample sizes, differences in sex-specific 
mortality can be better addressed. Additionally, a more in-depth assessment of the context of 
the samples will be used to help bridge the gap between the analysis of archaeological 
samples to making interpretations about the populations that they represent.  
 
Although the new TA method is still in a preliminary form, it is clear that pairing the statistical 
ideas of the existing TA procedure with a large number of age-informative features has been a 
success. More realistic approximations of age can be produced than ever before, with the 
prospect of even better estimates in the not so distant future.  
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CHAPTER 7: DISCUSSION, CONCLUSIONS, & FUTURE DIRECTIONS 
 
 
This dissertation, in conjunction with the work of the research team, is the first large-scale 
attempt to produce accurate, precise, and unbiased age estimates for the entire adult human 
lifespan using features throughout the skeleton. Figure 7.0 provides a timeline of the research 
conducted as part of this dissertation and the collaborative work performed as part of the NIJ 
project. Table 7.0 summarizes the samples used in each phase of this work. 
 
 

 
 
Figure 7.0: Timeline for this dissertation and the collaborative work conducted as part of the NIJ project.  
 
 
Building on over two decades of preliminary work by the research team, in Phase 1 more than 
200 trait variations were investigated to identify and refine a set of age-related features in five 
preliminary rounds of data collection. Fifty-three traits were then evaluated in a sample of 1,010 
individuals from four known-age North American skeletal collections to form the primary 
reference for later analyses. Based on this combined sample, logistic and generalized additive 
models were used to identify forty-five features with potentially useful age-related variation.   
 
These features were included in the more extensive list investigated by the NIJ-funded research 
team using skeletons of differing ancestry from four continents. The NIJ project and its 
relationship to this dissertation were described in Chapter 4 (Phase 2). In particular, two 
members of the research team (Milner and Boldsen), made substantive contributions to this 
dissertation in the areas of trait identification and refinement, and the statistical methods used to 
analyze this information, respectively. Discussion with all members of the research team related 
to the traits and the nature of aging are reflected in the excerpts of the draft NIJ trait manual in 
Appendix D, and throughout this dissertation.  
 
In Phase 3, a simplified version of the existing TA procedure was put into practice using the 
reference data collected in Phase 1 and two independent, known-age European samples. The 
Athens Collection, a sample of modern well-preserved, individuals who lived the majority of their 
lives after WWII, was used to evaluate the method’s performance under essentially ideal 
conditions. Over 70 variations of the new TA procedure were tested using combinations of 
different features, statistical models, reference samples, and prediction intervals to identify the 
effects of each choice on the accuracy and precision of the estimates produced. The possible 
effects of each factor were considered and the best-performing combinations were selected for 
additional testing on historical and archaeological skeletons.  
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Table 7.0. Samples collected in each research phase 
Research Phase Collection Location N M F 

Phase 1a:  
Preliminary Trait  
Identification &  
Refinement 

WM Bass Knoxville, TN 124 66 58 

WM Bass  Knoxville, TN 122 62 60 

WM Bass  Knoxville, TN 101 55 57 

WM Bass Knoxville, TN 196 91 105 

Phase 1b: 
Primary Trait  
Selection 

WM Bass  Knoxville, TN 500 272 228 

Maxwell Museum Albuquerque, NM 170 101 69 

UI-Stanford Iowa City, IA 149 129 20 

JCB Grant Toronto, ON 191 175 116 

Phase 2: 
NIJ Trait Refinement  
& Method  
Development 

WM Bass  Knoxville, TN 423 221 202 

Pretoria Pretoria, ZA 424 269 155 

Chiang Mai Chiang Mai, TH 440 271 169 

WM Bass (2) Knoxville, TN 14 12 2 

Lisbon Lisbon, Portugal 390 190 200 

Phase 3: 
Method Validation 

St. Bride’s Crypt London, UK 168 92 78 

Athens Donated Athens, GR 201 111 90 

Phase 4:  
Archaeological Application 

Ole Worms Gade  Odense, DK  317* 158 129 

Klosterkirke  Odense, DK  166* 85 78 
* Total number of individuals in the Phase 4 samples is not equal to the combined number of males and females 
because sex could not be estimated for every individual.  
 
 
The simplest three statistical model tested—the logistic curves—based on a combined, non-
sex-specific reference sample produced the best compromise between accuracy and precision. 
Age estimates produced using 30 features were slightly more accurate than those produced 
using all 40 possible traits, possibly because of the inappropriate narrowing of age intervals 
caused by highly correlated features. Estimating age with smaller feature sets—15 features 
based on expert judgment and 21 iteratively selected features—resulted in slightly wider age 
intervals with correspondingly higher accuracy; however, using fewer possible features at the 
outset greatly reduces the utility of the new TA method for partial remains. For the Athens 
sample, estimating age using trait probabilities from the modern individuals in the post-1981 
death cohort did not improve method performance. However, age estimates produced using the 
pre-1953 death cohort for the same individuals resulting in the highly atypical combination of 
wider age ranges with lower accuracy.  
 
The new TA method was then applied to a less well-preserved, known-age sample formed from 
a population a step further back in time—a historical sample from St. Bride’s Crypt in London, 
England—from the same time period as one of the Phase 4 archaeological samples. The overall 
accuracy, precision, or bias of the age estimates produced for the Athens and St. Bride’s 
samples were essentially the same, despite differences in the diet and health status of the 
individuals in each collection. As with the Athens sample, using a time period-specific reference 
sample did not improve the collective accuracy or precision of the age estimates. Surprising 
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however, unlike the Athens sample, estimating age based on probabilities from modern 
individuals (post-1981 death cohort) also had little effect on the performance of the method.  
 
Finally, in Phase 4, the new TA procedure was applied to two archaeological samples selected 
to represent the late Middle Ages and Early Modern periods in Denmark—Ole Worms Gade 
and Klosterkirke—where historical records indicate that changes in mortality patterns are 
likely to have occurred. Although standard methods of age estimation were hindered by the 
loss or damage of key portions of the pelvis, the new TA procedure was able to produce age 
estimates for nearly twice as many individuals in both archaeological samples. The three 
standard methods for the pubic symphysis and auricular surface were shown to produce 
essentially the same method-specific mortality distributions for the Athens, St. Bride’s and 
Danish samples despite known differences among these collections. Because none of the 
estimated distributions produced using standard techniques approximate the true age 
distribution of the known-age samples, the representations of past mortality are also highly 
suspect. Until additional testing is conducted, the age-at-death distributions produced for all 
past populations using these techniques should be considered, at best, questionable, and, at 
worst, fiction based on inherently flawed methods. To emphasize this point, if the patterns of 
age-at-death produced by each of the standard methods are truly universal, a researcher 
would only need to select a method to predict the mortality profile for a population—no 
evaluation of skeletons would be required.  
 
Discussion  
 
Trait selection and data collection procedures 
 
The traits used in this dissertation were refined by Milner and Getz in Phase 1 with some input 
from other members of the NIJ research team, but the data used in Phases 1, 3 and 4 were 
collected by a single individual. Because the vast majority of research shows that intra-observer 
error is typically lower than inter-observer error, it is possible that the new TA method may 
perform slightly better here than when applied by others; however, this possibility is mitigated by 
two factors. First, the reference data and those for the validation study and archaeological 
applications were collected over a period of several years. Data collection trips for this 
dissertation were interspersed with intensive trait refinement and work with diverse skeletal 
collections in collaboration with the NIJ research team. These factors likely introduced subtle 
shifts in trait definitions over time, particularly between Phases 1 and 4. These potential 
differences between the reference data and test samples introduce an unknown level of error 
into the age estimates that were produced.  
 
In this dissertation, no features from the two most widely used skeletal elements for adult age 
estimation—the pubic symphysis and auricular surface—were included in the new TA 
procedure. Although the inclusion of some pelvic joint features would undoubtedly improve age 
estimates, particularly in young adulthood, excluding these features allowed the value of 
previously unknown or under-utilized skeletal features to be evaluated. Importantly, this work 
demonstrates the collective strength of low information traits throughout the skeleton evaluated 
in a TA framework because it is possible to produce accurate and precise estimates throughout 
adulthood without the inclusion of traditional features. That said, modifications to some of the 
existing pubic symphysis and auricular surface features of existing TA have been made by the 
NIJ research team and will be included in the final version of the new TA procedure released to 
the osteological community. Additionally, because initial work on the new TA procedure focused 
on identifying features that provided age-related information in middle and old age, very few 
features with transitions in young adulthood were included in the tests presented here. Because 
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of this, individuals under 30 years of age showed higher error than would be expected in this 
portion of the lifespan and had a tendency to be placed into the youngest age category in the 
mortality distributions. This issue will be corrected as part of the NIJ project by adding additional 
features, such as fusion of vertebral epiphyses and iliac crests, which provide critical 
information in this age range. These additional data were collected for individuals in the Athens 
and St. Bride's samples and can be included in future analyses to evaluate their effect on 
method performance. 
 
Correlated traits  
 
In the variations of the new TA method tested here, only features from the left side of the 
skeleton were used. Although there are often bilateral differences in trait expression, relatively 
high correlations between bilateral features likely exist. Using data from only one side of the 
body reduces the potential error that could be introduced by including additional correlated 
features and eliminates the variability in age estimates that could be introduced by right-left 
asymmetries in trait age distributions. Differences between trait development in the right and left 
sides of the skeleton may result from important activity-related differences, but they may also be 
heavily influenced by the elements present for evaluation in the reference samples. The 
decision to use data from only one side of the skeleton does, however, have practical 
consequences for both the number of individuals that can be evaluated and, potentially, the 
quality of the age estimates produced. Because the right side was not used if the left was 
missing or damaged, fewer skeletons could be evaluated, particularly from the archaeological 
samples. Additionally, as shown in Chapter 5, the accuracy and precision of age estimates 
tends to increase, to a point, when a greater number of features are present. Therefore, age 
estimates may improve for some individuals in the St. Bride’s and archaeological samples, 
when traits from the right side are included, particularly when the left side is unavailable.  
 
An evaluation of the Phase 1 reference data set presented in Chapter 3 and Appendix E 
revealed a number of highly correlated trait pairs; however, no statistical correction has been 
included in the tests of the new TA procedure presented here. Using a reduced set of features 
selected by choosing the most age-informative feature from each highly correlated pair is a 
practical method that showed potential for reducing the effects of correlated traits. 
Unfortunately, the accuracy of the ages produced using this method variation still fell short of 
what would be expected using a 95% prediction interval. Using fewer traits also appears to 
increase variability in the point estimates produced and results in a potentially significant loss of 
useful data, particularly when only partial remains are available for analysis. 
 
Existing TA currently includes a statistical correction to reduce the influence of correlated traits 
on the estimated age ranges. However, tests of the method have shown that overall accuracy 
in several samples is still lower than would be expected using 95% prediction intervals (e.g., 
Figure 5.1), indicating that the effect of correlated features has not been entirely eliminated. 
Although it is still a work in progress by the NIJ research team, the final version of the new TA 
program released for general use will likely include a combination of both practical and 
statistical solutions. Where neither approach has succeeded independently, simultaneously 
selecting the most age-informative set of features with the lowest correlations and including a 
statistical correction may result in a better compromise between accuracy and precision than 
can be currently obtained.  
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Sex- and population-specific reference standards  
 
Although conventional wisdom suggests that models generated using samples of individuals 
who are more similar to those being evaluated would generate more accurate and precise 
results, this was not seen in the modern or historical collections evaluated in Phase 3. While 
the use of appropriate time period-specific probabilities does not result in a great improvement, 
using an inappropriate reference sample appears to have a significant adverse effect, at least 
for modern individuals. This is potentially the result of the large differences in sample size 
between the death cohorts. The lack of females in the earlier death cohort also prevented sex-
specific models for the historical St. Bride’s sample to be evaluated. Significantly larger samples 
of known-age individuals born in the nineteenth century would be needed to effectively evaluate 
the effects of using time period-specific reference samples and to confidently say something 
about secular changes in aging during the past several centuries.  
 
Prior distributions  
 
The versions of the new TA method tested in this dissertation assume a uniform prior 
distribution of age-at-death where all individuals between 15 and 105 years of age	
  are equally 
likely to end up in a mortality sample. The uniform prior distribution can be considered a 
conservative approach because it does not impose a specific age-at-death structure onto the 
data. However, it does impose unrealistic assumptions that have been shown to contribute to 
overestimates of age in older adults using the existing TA procedure. Fortunately, tests of 
existing TA with the Bass Collection (Milner & Boldsen, 2012c) and the Athens sample (Figure 
4.16) have shown that the choice of prior distribution makes very little difference until after 
around age 60 and no substantial difference until after age 80. In the archaeological 
applications, the new TA procedure was compared to the results generated by existing TA also 
using a uniform prior. So, although the existing TA method includes a correction for correlated 
features, the differences between existing TA and new TA are essentially only the result of the 
features used to generate the age estimates.  
 
Conclusions  
 
New statistical procedures are an important component in the process of moving the field 
towards more quantitatively justified age estimates. However, their application to poor skeletal 
indicators cannot possibly resolve many of the fundamental aspects of the adult age-estimation 
problem. Although differences in the aging process between the sexes and among populations 
have important implications for the study of the human species, existing methods of age 
estimation are too blunt a tool to contribute to these investigations. In this dissertation, several 
of the most commonly used methods in bioarchaeological and paleodemographic studies where 
applied to modern, historical, and archaeological samples. For the St. Bride's sample, the 
mortality distributions produced using three traditional methods neither resembled the true age 
distribution of the sample, nor each other. It was then shown that almost identical method-
specific patterns were produced in the mortality distributions for the known-age Athens sample 
and two Phase 4 archaeological samples. This direct comparison of the same methods, applied 
by the same observer to four different samples, revealed that each of the traditional methods 
tested produced a characteristic pattern of adult mortality that was essentially unaffected by 
differences in the age distribution of the sample evaluated. This clearly demonstrates that the 
need for population- and sex-specific refinements of existing methods pales in comparison to 
the importance of finding new age-informative traits that provide information throughout 
adulthood and creating new procedures for using this information effectively 
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This dissertation is a large-scale proof-of-concept that accurate and reasonably precise age 
estimates without significant bias can be produced for all of adulthood without using either of the 
most two most commonly used age indicators—the pubic symphysis and auricular surface. The 
new TA method produces a similar level of accuracy to procedures widely used by 
archaeologists and forensic anthropologists—Suchey-Brooks (1988,1990) and Buckberry-
Chamberlain (2002)—but with point estimates that strongly correlate with documented age and 
intervals that are, on average, half as wide. These results were obtained despite using a 
relatively simple logistic model to generate non-sex-specific trait probabilities from a diverse 
reference sample, and combining this information without correcting for correlated traits or using 
an informative prior distribution.   
 
Using the new TA method, there is reason to be optimistic about the future of 
paleodemography. Based on the results of Phases 3 and 4, we can be confident that the ability 
to produce accurate mortality profiles for past populations is closer than ever before. Although 
refinements are needed to the existing procedure to correct several issues and make it widely 
applicable to other populations, we have, for the first time, a method capable of producing 
statistically valid age estimates for the entire adult lifespan using even fragmented remains.  
 
Ongoing Work  
 
That NIJ-funded research team project is scheduled for completion in late 2017, with the release 
of a computer program and full scoring manual in early 2018. This project addresses a number 
of issues that could not be fully explored as part of this dissertation, including: 1) the selection of 
appropriate statistical models (GLM and GAM variations), 2) additional methods for identifying 
correlated traits and mitigating their effects, 3) evaluating inter- and intra-observer error, 4) 
assessing population variation related to ancestry, 5) the efficacy of different informative prior 
distributions, and 6) the development of computer software and materials for dissemination of 
the new method. At the conclusion of the NIJ project, a new version of the TA program—an 
elborated version of the technique used in Phases 3 and 4—will be disseminated to the entire 
osteological community as both a free, downloadable, stand-alone program and as part of an 
already widely used software package—Fordisc (Ousley and Jantz 2005). Trait definitions, 
diagrams, and photographs created in Phases 1, 2, and 3 will be included as part of both the 
scoring manual and computer software.  
 
Data for the new features identified and refined by the NIJ team were collected for the Athens, 
St. Bride’s, and Danish archaeological samples. The larger NIJ data set will be used to 
reevaluate the performance of the new TA method for these samples to assess the effect of 
adding additional features. The effects of including more features that provide additional 
information, particularly in very young and old age, as well as using a broader, more diverse 
reference sample will be assessed. Correlations between and among features will continue to 
be assessed, including those between the right and left sides of the body and those in areas of 
the skeleton that may be biologically or functionally related. New mortality profiles will also be 
produced for the two Danish archaeological samples using additional data from individuals of 
European ancestry collected as part of the NIJ project. These new age-at-death distributions will 
be evaluated in light of additional contextural information about the samples and demographic 
changes known to have occurred in the late Middle Ages and Early Modern period as a result of 
dietary changes, increased mobility, and improved sanitary conditions.  
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Future Directions  
 
Research related to the osteological aspects of this project will continue on multiple inter-related 
fronts. These include the identification of new traits and expansion of the existing reference data 
set using additional known-age skeletal collections. Variations of the new procedure, including 
statistical and methodological modifications incorporated by the research team, will be tested on 
combinations of the samples from the NIJ project and this dissertation, as well as on new 
samples as they become available. Future work will also investigate how forms of two- and 
three-dimensional data, including photographs, videos, laser scans, and computed tomography 
(CT), can be used in the documentation and analysis of skeletal features. Documenting features 
using these technologies could allow new traits to be assessed without the need to return to 
collections, which is not only costly and often impractical, but potentially damaging to fragile 
skeletal remains. These data, archieved in publically available databases, would also represent 
an invaluable resource for researchers and the teaching of human variation. Future work will 
assess the feasibility of investigating patterns in age-related features using CT data from living 
and recently deceased individuals. If successful, this line of investigation will allow age-related 
variation to be assessed on a scale that is not possible with skeletal samples.  
 
This dissertation, viewed in conjunction with the work being done by NIJ research team, 
provides every indication that a version of the new TA method may become the universal gold 
standard for adult age estimation. 
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APPENDIX A: PUBLICATIONS RELATED TO ADULT SKELETAL AGE 
ESTIMATION USING MACROSCOPIC FEATURES OF THE CRANIAL SUTURES, 
RIBS, PUBIC SYMPHYSIS, & SACRO-ILIAC JOINT 
 
 
This appendix is an extensive, but not exhaustive, list of publications related to age-at-death 
estimation for adult skeletons using the cranial sutures, ribs, pubic symphyses, sacro-iliac joint, 
and combinations of these features. Age-estimation procedures that have been tested, applied, 
or revised are listed individually with their related publications by category (e.g., 
tests/applications or revisions/modifications). Publications that both test an existing procedure 
and present revisions or test multiple procedures are listed multiple times as appropriate. 
Publications presenting general age-related observations on a particular part of the skeleton 
and methods that have not yet been evaluated by other researchers are grouped together in a 
single list (observations/other) at the end of each section.  
 
Research dealing with histological features of bones or teeth, or traits that can only be 
evaluated from MRI or CT data are included only if they also test or apply macroscopic 
methods. The multitude of conference presentations, Master’s theses, and PhD dissertations 
related adult skeletal age estimation are excluded from this list. An exception was made, 
however, for two theses, (Baker, 1984; Masset, 1982) dealing with the cranial sutures that are 
commonly cited in relevant publications and reference manuals. 
 
 
Cranial Sutures  
 
(Todd & Lyon, 1924, 1925a, 1925b) 
   Tests/applications: (Brooks, 1955; Dokladal, 1975; Meindl & Lovejoy, 1989; Singer, 

1953) 
 
(Acsadi & Nemeskeri, 1970) 
   Tests/applications: (Galera, Ubelaker, & Hayek, 1995; Khandare, Bhise, & Shinde, 

2015; Wolff, Vas, Sótonyi, & Magyar, 2012) 
 
(Masset, 1982) 

Tests/applications: (Galera et al., 1995; Galera, Ubelaker, & Hayek, 1998) 
 
(Baker, 1984) 

Tests/applications: (Galera et al., 1995, 1998) 
 
(Perizonius, 1984) 

Tests/applications:(Harth et al., 2009, 2010; Key, Aiello, & Molleson, 1994; Lynnerup & 
Jacobsen, 2003; Sahni & Jit, 2005) 

 
(Meindl & Lovejoy, 1985) 

Tests/applications: (M. F. Anderson et al., 2010; Galera et al., 1995, 1998; Gocha et al., 
2015; Hershkovitz et al., 1997; Key et al., 1994; Nagar & Hershkovitz, 2004; Saunders 
et al., 1992; Wolff et al., 2012) 
 
Revisions/modifications: (Key et al., 1994; Nawrocki, 1998) 
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(Mann, Jantz, Bass, & Willey, 1991; Mann, Symes, & Bass, 1987) 
Tests/applications: (Apostolidou et al., 2011; Ginter, 2005; Gruspier & Mullen, 1991) 
 
Revisions/modifications: (Nawrocki, 1998) 
 

Observations/other: (Abbie, 1950; Alesbury, Ubelaker, & Bernstein, 2013; Beauthier et al., 2010; 
Boyd, Villa, & Lynnerup, 2015; Broca, 1875; Chiba et al., 2013; Dorandeu et al., 2008; 
Dorandeu et al., 2009; Dwight, 1890a; Johnson, 1976; Kokich, 1976; Lynnerup & 
Jacobsen, 2003; Masset, 1971, 1989; N’Guyen, Gorse, & Vacher, 2007; Nagar & 
Hershkovitz, 2004; Obert et al., 2010; Parsons & Box, 1905; Powers, 1962; Saito, 
Shimizu, & Ooya, 2002; Sauvage, 1870; H. Schmitt & Tamáska, 1970; Singh, Oberoi, 
Gorea, & Kapila, 2004; Wenguang & Ke, 1989) 
 
 
 

Ribs 
 
(Michelson, 1934) 
 Tests/applications: (Garamendi, Landa, Botella, & Alemán, 2011) 
 
(Işcan, 1991; İşcan & Loth, 1986a, 1986b; İşcan, Loth, & Wright, 1984a, 1984b, 1985; İşcan, 
Wright, & Loth, 1987; Loth & İşcan, 1989) 
 

Tests and Applications: (Aktas, Koçak, Aktas, & Yemisçigil, 2004; Baccino et al., 1999; 
Cerezo-Román & Espinoza, 2014; Dedouit et al., 2008; Dudar, 1993; Dudar, Pfeiffer, & 
Saunders, 1993; Fanton, Gustin, Paultre, Schrag, & Malicier, 2010; Galera et al., 1995; 
Gocha et al., 2015; Gupta, Rai, Kalsey, & Gargi, 2007; Kimmerle, Prince, et al., 2008; 
Loth, 1995; Loth, İşcan, & Scheuerman, 1994; Martrille et al., 2007; Merritt, 2015; 
Nagar & Hershkovitz, 2004; Nikita, 2013; Oettlé & Steyn, 2000; Rejtarová, Hejna, 
Soukup, & Kuchař, 2009; Russell et al., 1993; Salem et al., 2014; Saunders et al., 1992; 
Telmon et al., 1996; Verzeletti, Cassina, Micheli, Conti, & De Ferrari, 2010; Verzeletti, 
Terlisio, & De Ferrari, 2013; Wolff et al., 2012; Yavuz, İşcan, & Çöloğlu, 1998; Yoder, 
Ubelaker, & Powell, 2001) 
 
Revisions/modifications: (Hartnett, 2010b; Oettlé & Steyn, 2000; Salem et al., 2014; 
Verzeletti et al., 2010; Verzeletti et al., 2013) 
 

(Kunos, Simpson, Russell, & Hershkovitz, 1999) 
 Tests/applications: (Kurki, 2005; Moskovitch et al., 2010; A. Schmitt & Murail, 2004) 
 

Revisions/modifications: (DiGangi et al., 2009) 
 

(Hartnett, 2010b) 
Tests/applications: (Merritt, 2014) 

 
Observations/other: (Barchilon et al., 1996; Davies, 1913; Elkeles, 1966; King, 1939; 

McCormick, 1980; McCormick & Stewart, 1988; Riebel, 1929; Semine & Damon, 1975; 
J. H. Stewart & McCormick, 1984) 
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Pubic Symphysis 
 
(Todd, 1920, 1921, 1923) 
  Tests/applications: (Aiello & Molleson, 1993; M. F. Anderson et al., 2010; Bongiovanni, 

2016; Brooks, 1955; Campanacho, Santos, & Cardoso, 2012; Galera et al., 1995; 
Jackes, 1985; Kimmerle, Konigsberg, Jantz, & Baraybar, 2008; Kimmerle, Prince, et al., 
2008; Meindl & Lovejoy, 1989; Meindl, Lovejoy, Mensforth, & Walker, 1985; Molleson, 
1995; Pal & Tamankar, 1983; Pfeiffer, 1980; Sinha & Gupta, 1995; Suchey, Wiseley, & 
Katz, 1986) 

 
  Revisions: (Brooks, 1955; Katz & Suchey, 1989; Meindl et al., 1985; Suchey et al., 

1986) 
 
(Gilbert & McKern, 1973; McKern & Stewart, 1957; T. D. Stewart, 1957) 

Tests/applications: (Meindl et al., 1985; Pal & Tamankar, 1983; Suchey et al., 1986) 
(Aiello & Molleson, 1993; Angel, 1971; Galera et al., 1995; Gilbert, 1973; Houck et al., 
1996; Johnston & Snow, 1961; Klepinger, Katz, Micozzi, & Carroll, 1992; Meindl & 
Lovejoy, 1989; Molleson, 1995; Pfeiffer, 1980, 1985; Sharma et al., 2008; Sinha & 
Gupta, 1995; Suchey, 1979) 

 
Revisions/modifications: (Snow, 1983; Suchey et al., 1986) 
 

(Acsadi & Nemeskeri, 1970) 
  Tests/applications: (Galera et al., 1995) 
 
(Hanihara & Suzuki, 1978) 

Tests/applications: (Chen, Zhang, & Tao, 2008; Meindl & Lovejoy, 1989; Sinha & 
Gupta, 1995; Zhaojin, 1988) 
 
Revisions/modifications: (Zhaojin, 1988) 
 

(Brooks & Suchey, 1990; Katz & Suchey, 1986, 1989; Suchey et al., 1988) 
  Tests/applications: (Baccino et al., 1999; Bednarek, Bloch-Bogusławska, & Sliwka, 

2001; Berg, 2008; Blanc et al., 2005; Bongiovanni, 2016; Campanacho et al., 2012; 
Chen et al., 2008; Djurić, Djonić, Nikolić, Popović, & Marinković, 2007; Fleischman, 
2013; Galera et al., 1995; Gauthier & Schutkowski, 2013; Gocha et al., 2015; Godde & 
Hens, 2012, 2015; Hens et al., 2008; Hoppa, 2000; Houck et al., 1996; Kimmerle, 
Konigsberg, et al., 2008; Kimmerle, Prince, et al., 2008; Klepinger et al., 1992; 
Lottering, MacGregor, Meredith, Alston, & Gregory, 2013; Martrille et al., 2007; Merritt, 
2015; Nagar & Hershkovitz, 2004; Overbury, Cabo, Dirkmaat, & Symes, 2009; Pasquier 
et al., 1999; Rissech et al., 2012; Sakaue, 2006; San Millán et al., 2013; Saunders et 
al., 1992; A. Schmitt, 2004, 2008; Shirley & Ramirez Montes, 2015; Sitchon & Hoppa, 
2005; Slice & Algee‐Hewitt, 2015; Stoyanova, Algee‐Hewitt, & Slice, 2015; Telmon et 
al., 2005; Telmon et al., 1996; Villa, Buckberry, Cattaneo, & Lynnerup, 2013; 
Wärmländer & Sholts, 2011; Wescott & Drew, 2015; Wink, 2014) 

 
Revisions/modifications: (Berg, 2008; Corsini, Schmitt, & Bruzek, 2005; Godde & Hens, 
2015; Hartnett, 2010a; Kimmerle, Konigsberg, et al., 2008; Konigsberg et al., 2008; 
Samworth & Gowland, 2007) 
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(Chen et al., 2008; Chen, Zhang, Zhu, & Tao, 2011) 
  Tests/applications: (Fleischman, 2013) 
 
(Hartnett, 2010a) 

  Tests/applications: (Merritt, 2014) 
 

(Dudzik & Langley, 2015; Ferrant et al., 2009; A. Schmitt, 2008; Wang, Wang, & Tian, 2012; 
Zhongyao, 1986, 1995; Zhongyao & Yang, 1999; Zongyao, 1982) 

 
 
 

Sacro-iliac Joint & Auricular Surface 
 
Observations: (Resnick, Niwayama, & Goergen, 1975; Sashin, 1930) 
 
(Bedford, Russell, & Lovejoy, 1989; Lovejoy, Meindl, Pryzbeck, et al., 1985) 
  Tests/applications: (M. F. Anderson et al., 2010; Barrier et al., 2009; Bongiovanni, 2016; 

Buckberry & Chamberlain, 2002; Galera et al., 1995; Gocha et al., 2015; Hens & Godde, 
2016; Hens et al., 2008; Lovejoy, Meindl, Mensforth, et al., 1985; Maat, 1987; Martrille et 
al., 2007; Meindl & Lovejoy, 1989; Merritt, 2015; Mulhern & Jones, 2005; Murray & 
Murray, 1991; Nagaoka & Hirata, 2008; Rissech et al., 2012; Rougé-Maillart, Telmon, 
Rissech, Malgosa, & Rougé, 2004; Saunders et al., 1992; A. Schmitt, 2004, 2005; 
Storey, 2007; Telmon et al., 1996) 

   
  Revisions/modifications: (Buckberry & Chamberlain, 2002; Corsini et al., 2005; Osborne 

et al., 2004; Samworth & Gowland, 2007) 
 
(A. Schmitt & Broqua, 2000) 
  Tests/applications: (Buk et al., 2012; Debono, Mafart, Guipert, & Jeusel, 2004) 
 
(Buckberry & Chamberlain, 2002) 
  Tests/applications: (Bongiovanni, 2016; Falys et al., 2006; Gauthier & Schutkowski, 

2013; Gocha et al., 2015; Hens & Belcastro, 2012; Hens & Godde, 2016; Merritt, 2015; 
Moraitis et al., 2014; Mulhern & Jones, 2005; Nagaoka & Hirata, 2008; Rissech et al., 
2012; Storey, 2007; Wescott & Drew, 2015) 

 
(Osborne et al., 2004) 
  Tests/applications: (Gocha et al., 2015) 
 
(Passalacqua, 2009) 
  Tests/applications: (Colarusso, 2016) 
 
Observations/other: (Ferrant et al., 2009; Igarashi, Uesu, Wakebe, & Kanazawa, 2005; A. 

Schmitt, 2005) 
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Combined Techniques  
 
(Lovejoy, Meindl, Mensforth, et al., 1985) 
  Tests/applications: (Bedford et al., 1993; Fairgrieve & Oost, 1995; Galera et al., 1998) 
 
(Acsadi & Nemeskeri, 1970) 
 Tests/applications: (Aiello & Molleson, 1993; Galera et al., 1998; Maat, 1987; Molleson, 

1995; Perizonius, 1984; Saunders et al., 1992; Sjvold, 1975) 
 
(A. Schmitt et al., 2002) 
 Tests/applications: (Martins et al., 2012) 
 
(Boldsen et al., 2002) 
 Tests/applications: (Bullock et al., 2013; DeWitte, 2010; Godde & Hens, 2012; Hurst, 

2010; Milner & Boldsen, 2012c; Storey, 2007; Wittschieber et al., 2014) 
 
(Samworth & Gowland, 2007) 
 Tests & Applications: (Passalacqua, 2010) 
 
Observations/other: (M. F. Anderson et al., 2010; Rougé-Maillart et al., 2009) 
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APPENDIX B: PHASE 1—TRANSITION CURVES FOR SELECTED FEATURES 
 
 
In Phase 1, a sample of 1010 individuals from four well-documented skeletal collections were 
used to select a set of features that collectively show age-related variation throughout 
adulthood. This appendix contains transition plots for these features, which include both a 
regression curve fitted with the glm() function, a standard part of the program R, and a 
generalized additive model (GAM) generated with the gam() function in the R package mgcv 
(Team, 2008; S. N. Wood, 2004, 2006a). Figure 1.0 shows the key components of the 
transition plots constructed for the analysis of Phase 1 traits.  
 
 

 
 

Figure B1.0. Key components of the transition plots used to evaluate Phase 1 traits.  
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Figure B1.1. Transition plots for HFI, parietal depressions, and occipital condyle lipping.  
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Figure B1.2. Transition plots for first rib fusion, R2 sternal end edge profile, and R3–10 sternal end edge profile.  
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Figure B1.3. Transition plots for R3–10 body thickness ("shingle ribs”) and sternal central dorsal ridge.  
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Figure B1.4. Transition plots for cervical, thoracic, and lumbar vertebral lipping.  
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Figure B1.5. Transition plots for cervical, thoracic, and lumbar vertebral candlewax. 
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Figure B1.6. Transition plots for C1 articular facet margin lipping and C1 articulation facet surface eburnation.  
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Figure B1.7. Transition plots for L5 superior margin shape.   
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Figure B1.8. Transition plots for L5 inferior margin shape.   
 



	
   139 

 
 
Figure B1.9. Transition plots for S1 superior margin shape.   
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Figure B1.10. Transition plots for S1-2 fusion and superior anterior sacroiliac joint fusion.  
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Figure B1.11. Transition plots for clavicle medial epiphysis fusion.  
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Figure B1.12. Transition plots for clavicle medial epiphysis irregular bone growth and clavicle lateral articulation 
surface macroporosity.   
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Figure B1.13. Transition plots for scapula glenoid fossa lipping.    
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Figure B1.14. Transition plots for humerus medial epicondyle, humerus lateral epicondyle, and humerus lesser 
tubercle margin lipping.   
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Figure B1.15. Transition plots for humerus lesser tubercle anterior surface bone growth, radius tuberosity medial 
crest, and trapezium lipping.  
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Figure B1.16. Transition plots for femoral fovea margin lipping and femoral head surface bone growth.  
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Figure B1.17. Transition plots for femur trochanteric fossa exostoses and femur trochanteric fossa medial surface 
exostoses.  
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Figure B1.18. Transition plots for acetabulum posterior margin lipping, acetabulum posterior articulation surface bone 
growth, and pubic symphysis ventral collar.   
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Figure B1.19. Transition plots for ischium superior margin spur, ischium surface irregular bone growth, and AIIS 
exostoses.  
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Figure B1.20. Transition plots for the subjective weight of the humerus, tibia, and innominate.   
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Figure B1.21. Transition plots for the subjective weight of the calcaneus.  
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APPENDIX C: TRANSITION ANALYSIS EQUATIONS  
 
 
In logistic regression, the natural log of the odds of a trait being present (p) (C1.0)—is 
mathematically equivalent to a linear combination of the independent variables and an error 
term (ε) that is assumed to be independent of age (C1.1). The basic mathematical steps to 
calculate probability from the fitted logistic model are shown in steps (C1.2–C1.8) and 
described briefly in Table C1.040.  
 
𝑙𝑜𝑔𝑖𝑡 𝑝 = ln 𝑜𝑑𝑑𝑠 =   𝑙𝑛 !

!!!
= 𝑙𝑛 !"#$%$&'&()  !"  !"#$!  !"#$#%&)

!"#$%$&'&()  !"  !"#$!  !"#$%&
      (C1.0) 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛 𝑝
1−𝑝 =   𝛽! +   𝛽!𝑥 +   𝜀       (C1.1) 

𝑒𝑙𝑛
!

!!! =   𝑒!!!  !!!             (C1.2) 

!
!!!

  =   𝑒!!!  !!!          (C1.3) 

𝑝 =   𝑒!!!  !!!    1 − 𝑝          (C1.4) 

𝑝 =   𝑒!!!  !!!   – 𝑝  (𝑒!!!  !!!   )        (C1.5) 

𝑝 +   𝑝   𝑒!!!  !!!    =   𝑒!!!  !!!           (C1.6) 

𝑝 𝑒!!!  !!! + 1 =   𝑒!!!  !!!           (C1.7) 

𝑝 =    !!!!  !!!  
!!!!  !!!!!

         (C1.8) 

 
Table C1.0. Steps to calculate probability from the logistic model.   

Starting  Equation Action Resulting Equation 

𝑙𝑛
𝑝

1 − 𝑝
=   𝛽! +   𝛽!𝑥 Take the exponential     

of each side. 
𝑝

1 − 𝑝
  =   𝑒!!!  !!! 

𝑝
1 − 𝑝

  =   𝑒!!!  !!! Multiple each side          
by (1-p) 𝑝 =   𝑒!!!  !!!   1 − 𝑝  

𝑝 =   𝑒!!!  !!!   1 − 𝑝  Distribute. 𝑝 =   𝑒!!!  !!!  – 𝑝  (𝑒!!!  !!!  ) 

𝑝 =   𝑒!!!  !!!  – 𝑝  (𝑒!!!  !!!  ) Add 𝑝  (𝑒!!!  !!!  )             
to both sides. 𝑝 +   𝑝   𝑒!!!  !!!   =   𝑒!!!  !!! 

𝑝 +   𝑝   𝑒!!!  !!!   =   𝑒!!!  !!! Take out p. 𝑝 𝑒!!!  !!! + 1 =   𝑒!!!  !!! 

𝑝 𝑒!!!  !!! + 1 =   𝑒!!!  !!! Divide by 𝑒!!!  !!! + 1 . 𝑝 =   
𝑒!!!  !!!  

𝑒!!!  !!! + 1
 

 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
40  For clarity, the error term is not shown in these steps. 
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As shown in the above section, the probability of a trait being present at a specific age can be 
recovered from the logistic model by using the logit link function (C1.19), which we will represent 
in the following section as (F). The probability of a trait being preset at age (x) using the logit link 
function is shown in equation C1.10. Because probabilities must sum to one, the probability of a 
trait being absent at the same age is equal to one minus the probability of it being present 
(C1.11).  
 
𝑙𝑜𝑔𝑖𝑡  𝑙𝑖𝑛𝑘  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐹 = !(∙)

!!!  (∙)
        (C1.9) 

 
𝑃𝑟 𝑦 = 1   𝑥) = !!!!  !!!  

!!!!  !!!!!
= 𝐹 𝛽! +   𝛽!𝑥        (C1.10) 

 
𝑃𝑟 𝑦 = 0   𝑥) = 1 −    !!!!  !!!  

!!!!  !!!!!
= 1 −   F 𝛽! +   𝛽!𝑥       (C1.11) 

 
 
If the features are independent, which in the case of adult age estimation is always a 
questionable assumption, the combined likelihood function for the presence or absence of 
multiple traits is the product of their individual likelihood functions (C1.12). For simplicity, this 
equation can be rewritten as equation C1.13.  
 
 
𝐿 =      [𝐹 𝛽! +   𝛽!𝑥! ]!!   [1 −   𝐹 𝛽! +   𝛽!𝑥! ]!!  !!!

!!!      (C1.12) 
 
𝐿 =      [𝐹!]!!   [1 −   𝐹!]!!  !!!

!!!         (C1.13) 
 
 
To make this equation easier to deal with from a mathematical and practical standpoint, we take 
the natural log of both sides (C1.14). Using the properties of logarithms, this equation can be 
rearranged into a more useful form (C1.15–C1.19).  Equation C1.19 is ultimately what is used to 
produce the maximum likelihood age estimates for the validation study in Phase 3.  
 
 
𝐿𝑛  𝐿 =   𝐿𝑛  [  (𝐹!)!!(1 −   𝐹!)!!  !! + (𝐹!)!!(1 −   𝐹!)!!  !! +  ∙∙∙   +  (𝐹!)!!(1 −   𝐹!)!!  !!)]   (C1.14) 
 
𝐿𝑛  𝐿 =   𝐿𝑛  [  (𝐹!)!!(1 −   𝐹!)!!  !!] + 𝐿𝑛[(𝐹!)!!(1 −   𝐹!)!!  !!] +  ∙∙∙   +   
                              𝐿𝑛  [(𝐹!)!!(1 −   𝐹!)!!  !!)]         (C1.15) 
  
𝐿𝑛  𝐿 =   𝐿𝑛  [(𝐹!)!!] + 𝐿𝑛[(1 −   𝐹!)!!  !!] + 𝐿𝑛[(𝐹!)!!] + 𝐿𝑛[(1 −   𝐹!)!!  !!] +  ∙∙∙   +   
𝐿𝑛  [  (𝐹!)!!]   + 𝐿𝑛[(1 −   𝐹!)!!  !!)]        (C1.16) 
 
𝐿𝑛  𝐿 =   𝑦!𝐿𝑛   𝐹! + (1 − 𝑦!)𝐿𝑛(1 −   𝐹!)   + 𝑦!𝐿𝑛(𝐹!) + (1 − 𝑦!)𝐿𝑛(1 −   𝐹!) +  ∙∙∙   +    (C1.17) 
𝑦!𝐿𝑛  (𝐹!)   + (1 − 𝑦!)𝐿𝑛(1 − 𝐹!  ) 
 
𝐿𝑛  𝐿 =    𝑦! 𝑙𝑛 𝐹!!

!!! + (1 − 𝑦!)𝑙𝑛 1 −   𝐹!       (C1.18) 
 
𝐿𝑛  𝐿 =    𝑦! 𝑙𝑛(𝑃𝑟 𝑦! = 1   𝑥!)!

!!! +   (1 − 𝑦!)ln  (𝑃𝑟 𝑦! = 0   𝑥!)     (C1.19) 
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APPENDIX D: TRAIT DEFINITIONS EXTRACTED FROM THE CURRENT NIJ 
SCORING MANUAL DRAFT  
 
 

 
 
Figure D1.0. NIJ trait manual cover page. 

Revised 
Transition 
Analysis 

Trait Manual
Ver 3.0

George R. Milner       Jesper L. Boldsen       Stephen D. Ousley       

Sara M. Getz Svenja Weise Peter Tarp



	
   155 

 
 
Figure D1.1. Parietal depression description and examples (page 1 of 2).  
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Figure D1.2. Parietal depression description and examples (page 2 of 2) 



	
   157 

 
 
Figure D1.3. C1 articular facet surface margin lipping description and examples.  
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Figure D1.4. C1 articular facet surface eburnation description and examples. 
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Figure D1.5. L5 margin shape description and examples. 
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Figure D1.6. S1 margin shape description and examples. 
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Figure D1.7. S1-2 fusion description and examples. 
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Figure D1.8. Cervical, thoracic, and lumbar vertebral lipping description and examples. 
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Figure D1.9. Cervical, thoracic, and lumbar vertebral candlewax description and examples. 
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Figure D1.10. Sternum central dorsal ridge description and examples (page 1 of 2). 
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Figure D1.11. Sternum central dorsal ridge (page 2 of 2) description and examples (page 2 of 2). 
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Figure D1.12. R2 and R3-10 sternal end rim profiles description and examples.  
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Figure D1.13. R3-10 rib body thickness (shingle ribs) description and examples.  
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Figure D1.14. Clavicle medial epiphysis fusion description and examples.  
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Figure D1.15. Clavicle medial epiphysis gravel description and examples.  
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Figure D1.16. Clavicle medial macroporosity description and examples.  
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Figure D1.17. Clavicle lateral macroporosity description and examples.  
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Figure D1.18. Scapula glenoid fossa raised border and lipping description and examples.  
 



	
   173 

 
 
Figure D1.19. Humerus lesser tubercle anterior surface bumps description and examples.  
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Figure D1.20. Humerus lesser tubercle margin shape description and examples.  
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Figure D1.21. Humerus medial epicondyle description and examples.  
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Figure D1.22. Humerus lateral epicondyle description and examples.  
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Figure D1.23. Radial tuberosity medial crest description and examples.  
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Figure D1.24. Trapezium lipping description and examples.  
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Figure D1.25. Femur fovea margin lipping description and examples.  
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Figure D1.26. Femur head surface extra bone growth description and examples. 
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Figure D1.27. Femur trochanteric fossa exostoses description and examples. 
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Figure D1.28. Femur medial trochanteric fossa exostoses description and examples (page 1 of 2) 
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Figure D1.29. Femur medial trochanteric fossa exostoses description and examples (page 2 of 2). 
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Figure D1.30. Superior-anterior sacroiliac joint fusion description and examples. 
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Figure D1.31. Ilium AIIS exostoses description and examples. 
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Figure D1.32. Acetabulum posterior margin lipping description and examples. 
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Figure D1.33. Acetabulum articular surface extra bone growth description and examples. 



	
   188 

 
 
Figure D1.34. Ischial tuberosity bumps description and examples. 
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Figure D1.35. Subjective bone weight descriptions. 
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APPENDIX E: CORRELATION MATRICES FOR PHASE 3 TRAITS 
	
  
This appendix contains correlation matrices for all pairs of the 40 features used in Phase 3. The 
correlations are based on the Phase 1 reference data set (N=1010). A coefficient of one means 
perfect agreement, while zero indicates no relationship. A positive coefficient indicates that 
when one trait is present the other is also likely to occur, with a higher number indicating a 
greater probability of the traits both appearing in the same individual. A negative coefficient 
indicates the opposite relationship, where if one trait is present, the other is less likely to occur. 
Coefficients are colored by the strength of the relationship (yellow: 0.3–0.499, orange: 0.5–
0.599, red: 0.6–0.99) to aid in assessing patterns although the extent to which the magnitude of 
the correlation will impact age estimates is unknown.  
	
  
	
  

	
  
 
Figure E1.0 Locations of the features in Phase 3 trait correlation matrices (Tables E1.0-E1.7). 
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Table E1.0. Correlation matrix for traits 1-6 

  
1 2 3 4 5 6 

 
Trait C1E C1Lip CalWT Cwax Clip ClavLatMacro 

1 C1E --- 0.357 0.180 0.060 0.335 0.240 
2 C1Lip 0.357 --- 0.142 0.076 0.308 0.275 
3 CalWT 0.180 0.142 --- 0.009 0.130 0.128 
4 CWax 0.060 0.076 0.009 --- 0.133 0.065 
5 CLip 0.335 0.308 0.130 0.133 --- 0.327 
6 ClavLatMacro 0.240 0.275 0.128 0.065 0.327 --- 
7 ClavFus 0.080 0.166 0.041 0.016 0.133 0.125 
8 ClavMedGrav 0.251 0.259 0.171 0.141 0.372 0.328 
9 ForMar 0.253 0.288 0.172 0.045 0.337 0.276 

10 HumLatEpi 0.262 0.365 0.144 0.100 0.406 0.363 
11 HumLesTubBumps 0.323 0.220 0.142 0.093 0.325 0.259 
12 HumLesTubLip 0.410 0.360 0.192 0.129 0.466 0.398 
13 HumWT 0.167 0.102 0.482 0.024 0.128 0.126 
14 OSWT 0.240 0.129 0.541 -0.018 0.103 0.132 
15 IschTubBumps 0.177 0.141 0.216 0.107 0.191 0.193 
16 L5InfMarLip 0.265 0.375 0.169 0.076 0.434 0.378 
17 L5SupMarLip 0.187 0.358 0.138 0.063 0.393 0.343 
18 LWax 0.100 0.065 0.011 0.218 0.103 0.045 
19 Llip 0.280 0.289 0.112 0.132 0.480 0.341 
20 FemMedTroch 0.292 0.259 0.101 0.063 0.361 0.269 
21 AcePostMar 0.275 0.303 0.205 0.078 0.356 0.268 
22 ParDep 0.114 0.043 0.089 -0.021 0.042 0.025 
23 R310Shingle 0.130 0.041 0.201 -0.026 0.082 0.008 
24 S1SupRnd 0.168 0.268 0.119 0.051 0.280 0.277 
25 ScapFossaRnd 0.167 0.369 0.107 0.049 0.313 0.286 
26 Twax 0.217 0.154 0.017 0.188 0.268 0.199 
27 TLip 0.305 0.301 0.121 0.091 0.393 0.298 
28 TibWT 0.156 0.101 0.627 0.021 0.109 0.107 
29 TrapLip 0.244 0.242 0.177 0.055 0.263 0.174 
30 TrochFos 0.268 0.272 0.121 0.067 0.342 0.296 
31 AIIS 0.265 0.199 0.225 0.109 0.305 0.202 
32 AcePostSur 0.160 0.143 0.136 0.056 0.158 0.096 
33 FemHead 0.121 0.136 0.097 0.050 0.198 0.166 
34 HumMedEpi 0.316 0.284 0.118 0.130 0.385 0.292 
35 R2Edge 0.257 0.273 0.107 0.084 0.313 0.274 
36 R310Edge 0.237 0.356 0.141 0.082 0.428 0.312 
37 RadCrest 0.253 0.187 0.033 0.115 0.252 0.203 
38 S12 Fusion 0.088 0.212 0.052 0.023 0.177 0.175 
39 SIFusion 0.106 0.068 -0.010 0.130 0.153 0.139 
40 SternRidge 0.223 0.198 0.306 0.115 0.210 0.159 
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Table E1.1. Correlation matrix for traits 7-11 

  
7 8 9 10 11 

 
Trait ClavFus ClavMedGrav  ForMar HumLatEpi HumLesTubBumps 

1 C1E 0.080 0.251 0.253 0.262 0.323 
2 C1Lip 0.166 0.259 0.288 0.365 0.220 
3 CalWT 0.041 0.171 0.172 0.144 0.142 
4 CWax 0.016 0.141 0.045 0.100 0.093 
5 CLip 0.133 0.372 0.337 0.406 0.325 
6 ClavLatMacro  0.125 0.328 0.276 0.363 0.259 
7 ClavFus --- NA 0.168 0.152 0.068 
8 ClavMedGrav  NA --- 0.376 0.353 0.454 
9 ForMar 0.168 0.376 --- 0.417 0.296 

10 HumLatEpi 0.152 0.353 0.417 --- 0.349 
11 HumLesTubBumps 0.068 0.454 0.296 0.349 --- 
12 HumLesTubLip 0.123 0.489 0.408 0.520 0.541 
13 HumWT 0.027 0.116 0.112 0.169 0.171 
14 OSWT 0.031 0.158 0.147 0.142 0.158 
15 IschTubBumps 0.050 0.250 0.212 0.245 0.321 
16 L5InfMarLip 0.228 0.371 0.444 0.498 0.312 
17 L5SupMarLip 0.284 0.288 0.392 0.451 0.243 
18 LWax 0.017 0.156 0.073 0.092 0.183 
19 Llip 0.126 0.349 0.292 0.412 0.369 
20 FemMedTroch 0.113 0.311 0.380 0.332 0.354 
21 AcePostMar 0.089 0.361 0.376 0.349 0.324 
22 ParDep 0.012 -0.006 0.055 0.062 0.081 
23 R310Shingle 0.018 0.089 0.099 0.081 0.044 
24 S1SupRnd 0.264 0.244 0.401 0.366 0.213 
25 ScapFossaRnd 0.355 0.239 0.423 0.349 0.178 
26 Twax 0.045 0.358 0.209 0.261 0.320 
27 TLip 0.115 0.429 0.333 0.400 0.347 
28 TibWT 0.027 0.147 0.143 0.154 0.154 
29 TrapLip 0.049 0.188 0.136 0.217 0.223 
30 TrochFos 0.112 0.360 0.452 0.405 0.331 
31 AIIS 0.070 0.323 0.284 0.272 0.358 
32 AcePostSur 0.027 0.180 0.154 0.134 0.120 
33 FemHead 0.043 0.178 0.248 0.137 0.203 
34 HumMedEpi 0.092 0.398 0.301 0.519 0.388 
35 R2Edge 0.222 0.267 0.355 0.285 0.278 
36 R310Edge 0.261 0.297 0.447 0.419 0.309 
37 RadCrest 0.064 0.273 0.192 0.301 0.346 
38 S12 FusionOpen 0.561 0.095 0.192 0.193 0.094 
39 SIFusion 0.031 0.200 0.146 0.115 0.190 
40 SternRidge 0.069 0.252 0.301  0.266 0.274 
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Table E1.2. Correlation matrix for traits 12-16 

  
12 13 14 15 16 

 
Trait HumLesTubLip HumWT OSWT IschTubBumps L5InfMarLip 

1 C1E 0.410 0.167 0.240 0.177 0.265 
2 C1Lip 0.360 0.102 0.129 0.141 0.375 
3 CalWT 0.192 0.482 0.541 0.216 0.169 
4 CWax 0.129 0.024 -0.018 0.107 0.076 
5 CLip 0.466 0.128 0.103 0.191 0.434 
6 ClavLatMacro  0.398 0.126 0.132 0.193 0.378 
7 ClavEpiphFus 0.123 0.027 0.031 0.050 0.228 
8 ClavMedGravel  0.489 0.116 0.158 0.250 0.371 
9 ForMar 0.408 0.112 0.147 0.212 0.444 

10 HumLatEpi 0.520 0.169 0.142 0.245 0.498 
11 HumLesTubBumps 0.541 0.171 0.158 0.321 0.312 
12 HumLesTubLip --- 0.155 0.207 0.354 0.510 
13 HumWT 0.155 --- 0.625 0.254 0.112 
14 OSWT 0.207 0.625 --- 0.263 0.157 
15 IschTubBumps 0.354 0.254 0.263 --- 0.218 
16 L5InfMarLip 0.510 0.112 0.157 0.218 --- 
17 L5SupMarLip 0.403 0.107 0.117 0.176 0.625 
18 LWax 0.112 0.024 0.044 0.082 0.054 
19 Llip 0.458 0.103 0.110 0.307 0.487 
20 FemMedTroch 0.426 0.123 0.104 0.258 0.341 
21 AcePostMar 0.445 0.178 0.192 0.246 0.390 
22 ParDep 0.086 0.120 0.126 0.001 0.062 
23 R310Shingle 0.094 0.193 0.212 0.141 0.062 
24 S1SupRound 0.317 0.086 0.091 0.171 0.593 
25 ScapFossaRound 0.329 0.084 0.097 0.151 0.502 
26 Twax 0.307 0.089 0.096 0.193 0.193 
27 TLip 0.442 0.122 0.153 0.281 0.369 
28 TibWT 0.163 0.709 0.608 0.248 0.099 
29 TrapLip 0.300 0.205 0.176 0.195 0.195 
30 TrochFos 0.480 0.120 0.138 0.218 0.381 
31 AIIS 0.420 0.144 0.147 0.326 0.267 
32 AcePostSur 0.136 0.176 0.156 0.111 0.137 
33 FemHead 0.190 0.071 0.015 0.139 0.151 
34 HumMedEpi 0.505 0.117 0.139 0.241 0.398 
35 R2Edge 0.396 0.138 0.130 0.186 0.296 
36 R310Edge 0.412 0.119 0.151 0.204 0.427 
37 RadCrest 0.315 0.087 0.048 0.189 0.237 
38 S12 Fusion 0.149 0.039 0.047 0.076 0.237 
39 SIFusion 0.189 0.006 -0.010 0.017 0.136 
40 SternRidge 0.324 0.335 0.306 0.388 0.286 
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Table E1.3. Correlation matrix for traits 17-22  

  
17 18 19 20 21 22 

 
Trait L5SupMarLip LWax LLip FemMedTroch AcePostMar ParDep 

1 C1E 0.187 0.100 0.280 0.292 0.275 0.114 
2 C1Lip 0.358 0.065 0.289 0.259 0.303 0.043 
3 CalWT 0.138 0.011 0.112 0.101 0.205 0.089 
4 CWax 0.063 0.218 0.132 0.063 0.078 -0.021 
5 CLip 0.393 0.103 0.480 0.361 0.356 0.042 
6 ClavLatMacro  0.343 0.045 0.341 0.269 0.268 0.025 
7 ClavFus 0.284 0.017 0.126 0.113 0.089 0.012 
8 ClavMedGravel  0.288 0.156 0.349 0.311 0.361 -0.006 
9 ForMar 0.392 0.073 0.292 0.380 0.376 0.055 

10 HumLatEpi 0.451 0.092 0.412 0.332 0.349 0.062 
11 HumLesTubBumps 0.243 0.183 0.369 0.354 0.324 0.081 
12 HumLesTubLip 0.403 0.112 0.458 0.426 0.445 0.086 
13 HumWT 0.107 0.024 0.103 0.123 0.178 0.120 
14 OSWT 0.117 0.044 0.110 0.104 0.192 0.126 
15 IschTubBumps 0.176 0.082 0.307 0.258 0.246 0.001 
16 L5InfMarLip 0.625 0.054 0.487 0.341 0.390 0.062 
17 L5SupMarLip --- 0.064 0.435 0.325 0.342 0.052 
18 LWax 0.064 --- 0.139 0.056 0.060 0.058 
19 Llip 0.435 0.139 --- 0.300 0.378 0.046 
20 FemMedTroch 0.325 0.056 0.300 --- 0.342 -0.008 
21 AcePostMar 0.342 0.060 0.378 0.342 --- 0.069 
22 ParDep 0.052 0.058 0.046 -0.008 0.069 --- 
23 R310Shingle 0.046 0.078 0.005 0.123 0.116 0.143 
24 S1SupRnd 0.523 0.055 0.366 0.220 0.281 0.043 
25 ScapFossaRnd 0.475 0.049 0.295 0.301 0.263 0.046 
26 Twax 0.172 0.302 0.320 0.195 0.233 0.039 
27 TLip 0.361 0.132 0.503 0.277 0.361 0.052 
28 TibWT 0.100 0.021 0.063 0.124 0.184 0.125 
29 TrapLip 0.181 0.059 0.245 0.170 0.225 0.066 
30 TrochFos 0.334 0.080 0.359 0.537 0.336 -0.018 
31 AIIS 0.219 0.071 0.319 0.342 0.354 0.060 
32 AcePostSur 0.097 0.024 0.156 0.084 0.209 0.058 
33 FemHead 0.122 0.022 0.166 0.204 0.226 0.007 
34 HumMedEpi 0.316 0.127 0.382 0.220 0.277 0.000 
35 R2Edge 0.335 0.065 0.270 0.281 0.339 -0.006 
36 R310Edge 0.489 0.042 0.334 0.300 0.377 0.063 
37 RadCrest 0.219 0.116 0.307 0.226 0.209 0.025 
38 S12 Fusion 0.235 0.023 0.154 0.145 0.130 0.018 
39 SIFusion 0.103 0.223 0.162 0.161 0.119 -0.041 
40 SternRidge 0.245 0.051 0.227 0.276 0.297 0.018 
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Table E1.4. Correlation matrix for traits 23-27 

  
23 24 25 26 27 

 
Trait R310Single S1SupRnd ScapFossaRnd Twax TLip 

1 C1E 0.130 0.168 0.167 0.217 0.305 
2 C1Lip 0.041 0.268 0.369 0.154 0.301 
3 CalWT 0.201 0.119 0.107 0.017 0.121 
4 CWax -0.026 0.051 0.049 0.188 0.091 
5 CLip 0.082 0.280 0.313 0.268 0.393 
6 ClavLatMacro  0.008 0.277 0.286 0.199 0.298 
7 ClavFus 0.018 0.264 0.355 0.045 0.115 
8 ClavMedGrav 0.089 0.244 0.239 0.358 0.429 
9 ForMar 0.099 0.401 0.423 0.209 0.333 

10 HumLatEpi 0.081 0.366 0.349 0.261 0.400 
11 HumLesTubBumps 0.044 0.213 0.178 0.320 0.347 
12 HumLesTubLip 0.094 0.317 0.329 0.307 0.442 
13 HumWT 0.193 0.086 0.084 0.089 0.122 
14 OSWT 0.212 0.091 0.097 0.096 0.153 
15 IschTubBumps 0.141 0.171 0.151 0.193 0.281 
16 L5InfMarLip 0.062 0.593 0.502 0.193 0.369 
17 L5SupMarLip 0.046 0.523 0.475 0.172 0.361 
18 LWax 0.078 0.055 0.049 0.302 0.132 
19 Llip 0.005 0.366 0.295 0.320 0.503 
20 FemMedTroch 0.123 0.220 0.301 0.195 0.277 
21 AcePostMar 0.116 0.281 0.263 0.233 0.361 
22 ParDep 0.143 0.043 0.046 0.039 0.052 
23 R310Shingle --- 0.024 0.057 -0.008 0.042 
24 S1SupRnd 0.024 --- 0.432 0.132 0.293 
25 ScapFossaRnd 0.057 0.432 --- 0.134 0.292 
26 Twax -0.008 0.132 0.134 --- 0.402 
27 TLip 0.042 0.293 0.292 0.402 --- 
28 TibWT 0.207 0.094 0.084 0.038 0.088 
29 TrapLip 0.102 0.139 0.121 0.179 0.224 
30 TrochFos 0.085 0.317 0.297 0.234 0.321 
31 AIIS 0.133 0.211 0.209 0.269 0.294 
32 AcePostSur 0.054 0.083 0.084 0.141 0.121 
33 FemHead 0.133 0.080 0.127 0.090 0.127 
34 HumMedEpi 0.033 0.284 0.242 0.311 0.392 
35 R2Edge 0.104 0.250 0.304 0.156 0.320 
36 R310Edge 0.093 0.348 0.378 0.168 0.317 
37 RadCrest 0.028 0.196 0.175 0.253 0.268 
38 S12 Fusion 0.028 0.250 0.390 0.062 0.155 
39 SIFusion -0.047 0.101 0.089 0.293 0.190 
40 SternRidge 0.126 0.225 0.196 0.176 0.276 
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Table E1.5. Correlation matrix for traits 28-32 

  
28 29 30 31 32 

 
Trait TibWT TrapLip TrochFos AIIS AcePostSur 

1 C1E 0.156 0.244 0.268 0.265 0.160 
2 C1Lip 0.101 0.242 0.272 0.199 0.143 
3 CalWT 0.627 0.177 0.121 0.225 0.136 
4 CWax 0.021 0.055 0.067 0.109 0.056 
5 CLip 0.109 0.263 0.342 0.305 0.158 
6 ClavLatMacro  0.107 0.174 0.296 0.202 0.096 
7 ClavFus 0.027 0.049 0.112 0.070 0.027 
8 ClavMedGrav 0.147 0.188 0.360 0.323 0.180 
9 ForMar 0.143 0.136 0.452 0.284 0.154 

10 HumLatEpi 0.154 0.217 0.405 0.272 0.134 
11 HumLesTubBumps 0.154 0.223 0.331 0.358 0.120 
12 HumLesTubLip 0.163 0.300 0.480 0.420 0.136 
13 HumWT 0.709 0.205 0.120 0.144 0.176 
14 OSWT 0.608 0.176 0.138 0.147 0.156 
15 IschTubBumps 0.248 0.195 0.218 0.326 0.111 
16 L5InfMarLip 0.099 0.195 0.381 0.267 0.137 
17 L5SupMarLip 0.100 0.181 0.334 0.219 0.097 
18 LWax 0.021 0.059 0.080 0.071 0.024 
19 Llip 0.063 0.245 0.359 0.319 0.156 
20 FemMedTroch 0.124 0.170 0.537 0.342 0.084 
21 AcePostMar 0.184 0.225 0.336 0.354 0.209 
22 ParDep 0.125 0.066 -0.018 0.060 0.058 
23 R310Shingle 0.207 0.102 0.085 0.133 0.054 
24 S1SupRnd 0.094 0.139 0.317 0.211 0.083 
25 ScapFossaRnd 0.084 0.121 0.297 0.209 0.084 
26 Twax 0.038 0.179 0.234 0.269 0.141 
27 TLip 0.088 0.224 0.321 0.294 0.121 
28 TibWT --- 0.174 0.128 0.177 0.220 
29 TrapLip 0.174 --- 0.146 0.098 0.125 
30 TrochFos 0.128 0.146 --- 0.284 0.127 
31 AIIS 0.177 0.098 0.284 --- 0.137 
32 AcePostSur 0.220 0.125 0.127 0.137 --- 
33 FemHead 0.069 0.131 0.196 0.154 0.100 
34 HumMedEpi 0.127 0.228 0.300 0.281 0.116 
35 R2Edge 0.111 0.125 0.273 0.200 0.100 
36 R310Edge 0.132 0.194 0.324 0.250 0.113 
37 RadCrest 0.095 0.108 0.215 0.226 0.128 
38 S12 Fusion 0.040 0.068 0.152 0.101 0.041 
39 SIFusion -0.015 -0.010 0.138 0.151 0.043 
40 SternRidge 0.369 0.257 0.227 0.224 0.161 
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Table E1.6. Correlation matrix for traits 33-36 

  
33 34 35 36 

 
Trait FemHead HumMedEpi R2Edge R310Edge 

1 C1E 0.121 0.316 0.257 0.237 
2 C1Lip 0.136 0.284 0.273 0.356 
3 CalWT 0.097 0.118 0.107 0.141 
4 CWax 0.050 0.130 0.084 0.082 
5 CLip 0.198 0.385 0.313 0.428 
6 ClavLatMacro  0.166 0.292 0.274 0.312 
7 ClavFus 0.043 0.092 0.222 0.261 
8 ClavMedGrav 0.178 0.398 0.267 0.297 
9 ForMar 0.248 0.301 0.355 0.447 

10 HumLatEpi 0.137 0.519 0.285 0.419 
11 HumLesTubBumps 0.203 0.388 0.277 0.309 
12 HumLesTubLip 0.190 0.505 0.396 0.412 
13 HumWT 0.071 0.117 0.138 0.119 
14 OSWT 0.015 0.139 0.130 0.151 
15 IschTubBumps 0.139 0.241 0.186 0.204 
16 L5InfMarLip 0.151 0.398 0.296 0.427 
17 L5SupMarLip 0.122 0.316 0.335 0.489 
18 LWax 0.022 0.127 0.065 0.042 
19 Llip 0.166 0.382 0.270 0.334 
20 FemMedTroch 0.204 0.220 0.281 0.300 
21 AcePostMar 0.226 0.277 0.339 0.377 
22 ParDep 0.007 0.000 -0.006 0.063 
23 R310Shingle 0.133 0.033 0.104 0.093 
24 S1SupRnd 0.080 0.284 0.250 0.348 
25 ScapFossaRnd 0.127 0.242 0.304 0.378 
26 Twax 0.090 0.311 0.156 0.168 
27 TLip 0.127 0.392 0.320 0.317 
28 TibWT 0.069 0.127 0.111 0.132 
29 TrapLip 0.131 0.228 0.125 0.194 
30 TrochFos 0.196 0.300 0.273 0.324 
31 AIIS 0.154 0.281 0.200 0.250 
32 AcePostSur 0.100 0.116 0.100 0.113 
33 FemHead --- 0.123 0.190 0.183 
34 HumMedEpi 0.123 --- 0.264 0.320 
35 R2Edge 0.190 0.264 --- 0.743 
36 R310Edge 0.183 0.320 0.743 --- 
37 RadCrest 0.064 0.359 0.272 0.226 
38 S12 Fusion 0.065 0.125 0.253 0.291 
39 SIFusion 0.042 0.158 0.123 0.077 
40 SternRidge 0.160 0.330 0.239 0.205 
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Table E1.7. Correlation matrix for traits 37-40 

  
37 38 39 40 

 
Trait RadCrest S12Fusion SIFusion SternRidge 

1 C1E 0.253 0.088 0.106 0.223 
2 C1Lip 0.187 0.212 0.068 0.198 
3 CalWT 0.033 0.052 -0.010 0.306 
4 CWax 0.115 0.023 0.130 0.115 
5 CLip 0.252 0.177 0.153 0.210 
6 ClavLatMacro  0.203 0.175 0.139 0.159 
7 ClavFus 0.064 0.561 0.031 0.069 
8 ClavMedGrav 0.273 0.095 0.200 0.252 
9 ForMar 0.192 0.192 0.146 0.301 

10 HumLatEpi 0.301 0.193 0.115 0.266 
11 HumLesTubBumps 0.346 0.094 0.190 0.274 
12 HumLesTubLip 0.315 0.149 0.189 0.324 
13 HumWT 0.087 0.039 0.006 0.335 
14 OSWT 0.048 0.047 -0.010 0.306 
15 IschTubBumps 0.189 0.076 0.017 0.388 
16 L5InfMarLip 0.237 0.237 0.136 0.286 
17 L5SupMarLip 0.219 0.235 0.103 0.245 
18 LWax 0.116 0.023 0.223 0.051 
19 Llip 0.307 0.154 0.162 0.227 
20 FemMedTroch 0.226 0.145 0.161 0.276 
21 AcePostMar 0.209 0.130 0.119 0.297 
22 ParDep 0.025 0.018 -0.041 0.018 
23 R310Shingle 0.028 0.028 -0.047 0.126 
24 S1SupRnd 0.196 0.250 0.101 0.225 
25 ScapFossaRnd 0.175 0.390 0.089 0.196 
26 Twax 0.253 0.062 0.293 0.176 
27 TLip 0.268 0.155 0.190 0.276 
28 TibWT 0.095 0.040 -0.015 0.369 
29 TrapLip 0.108 0.068 -0.010 0.257 
30 TrochFos 0.215 0.152 0.138 0.227 
31 AIIS 0.226 0.101 0.151 0.224 
32 AcePostSur 0.128 0.041 0.043 0.161 
33 FemHead 0.064 0.065 0.042 0.160 
34 HumMedEpi 0.359 0.125 0.158 0.330 
35 R2Edge 0.272 0.253 0.123 0.239 
36 R310Edge 0.226 0.291 0.077 0.205 
37 RadCrest --- 0.088 0.146 0.207 
38 S12 Fusion 0.088 --- 0.044 0.084 
39 SIFusion 0.146 0.044 --- -0.032 
40 SternRidge 0.207 0.084 -0.032 --- 
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